Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ специфичность

    В основе ферментативного катализа, вероятно, лежит принцип пространственного и энергетического соответствия, причем большая по сравнению с гетерогенным катализом специфичность ферментов предполагает и более узкие пределы энергетического соответствия. Старое образное выражение фермент подходит к субстрату, как ключ к замку неожиданно приобретает новый, буквальный смысл. Этому условию не противоречит наличие у некоторых ферментов только одного активного центра. [c.261]


    Являясь результатом стереохимических отношений между реагентами и катализатором, матричный эффект, таким образом, не только способствует инициированию реакции, но и в известной степени ориентирует реакцию, т. е. придает катализу специфичность. [c.117]

    Различают два основных класса каталитических процессов— гомогенный и гетерогенный катализ. Гомогенный катализ рассматривался в главе II. Гетерогенные каталитические процессы с применением главным образом твердых катализаторов имеют огромное промышленное значение. Помимо специфичности действия, твердые катализаторы обладают высокой термостабильностью и легко отделяются от реакционной среды. Некоторые наиболее важные гетерогенные каталитические процессы перечислены в табл. 52. [c.202]

    Роль фермента заключается в том, что он предоставляет поверхность, к которой может прикрепляться тот или иной субстрат (молекула, подвергаемая воздействию на поверхности), и облегчает образование или разрыв связей в этой молекуле. Место на поверхности фермента, проявляющее такую активность, называется активным центром фермента. Фермент выполняет две функции распознавание и катализ. Если фермент будет без разбора связывать каждую оказавшуюся вблизи молекулу, то лишь небольшая часть времени израсходуется на катализ реакции, для которой предназначается данный фермент. Но фермент окажется точно так же бесполезным, если, связывая нужную молекулу, он не будет способствовать образованию или разрыву в ней надлежащих связей. Распознавание ферментами своих истинных субстратов осуществляется при помощи расположенных определенным образом в активном центре фермента боковых аминокислотных групп, способных взаимодействовать с молекулой субстрата электростатически, либо в результате образования водородных связей или же притяжения гидрофобных групп. Такой отбор молекул путем связывания с ферментом называется его специфичностью. [c.317]

    Наиболее важный класс глобулярных белков образуют биологические катализаторы, ферменты. Они характеризуются каталитическим механизмом, позволяющим им ускорять достижение конкретной реакцией состояния термодинамического равновесия, а также специфичность к субстрату, благодаря которой они способны делать выбор между потенциальными молекулами субстратов, воздействуя на одни из них и отказываясь воздействовать на другие. Участок поверхности фермента, на котором происходит катализ, называется активным центром. Механизм катализа может осуществляться при помощи заряженных групп, доноров и акцепторов электрона или протона, а также при помощи атомов металла в активном центре фермента. Избирательность ферментов обусловливается формой их поверхности и характером взаимодействия с субстратом, например водородной связью, электростатическим взаимодействием или гидрофобным притяжением. Фермент и его субстрат соответствуют друг другу по форме и размеру, как ключ и замок. [c.339]


    Пока карбоний-ионы или карбанионы являются свободными частицами или слабо связаны с соответствующими им противоположно заряженными ионами, кислотный и основной катализ сводятся к химии карбоний-иона и карбаниона, и нет оснований ожидать большой специфичности. В обоих случаях следует подчеркнуть первостепенную важность выбора растворителя для заданной концентрации кислоты [c.44]

    Третья стадия процессов окисления — передача электронов от донора к акцептору (от реагента к кислороду), в отличие от первых двух, является специфичной для гетерогенного катализа и связывает его с проблемами физики твердого тела. Принципиально проблема подвижности электронов в адсорбционном комплексе не отличается от проблемы подвижности электронов внутри молекулы, поскольку такая подвижность обусловливает реакционную способность системы. Действительно, реакцию окисления какого-либо соединения, например 80-2, на твердом катализаторе можно себе представить в виде [c.28]

    Общие понятия и определения. Явление катализа можно определить как зависимость скорости реакций от присутствия веществ — катализаторов, которые на отдельных стадиях химического процесса вступают во взаимодействие с реагирующими молекулами и резко изменяют скорость реакции, оставаясь в химически неизмененном виде. Катализатором реакции является вещество — атомы, молекулы, ионы или поверхности раздела фаз, которое взаимодействует с молекулами реагирующих веществ, изменяет скорость химической реакции и выделяется на последующих стадиях в химически неизмененном виде. Большое практическое и теоретическое значение имеют катализаторы, повышающие скорости химических реакций. Иногда нх назьшают положительными катализаторами. Катализаторы, понижающие скорость химической реакции, называют отрицательными катализаторами. Все каталитические процессы с учетом их специфичности можно разбить на три группы. [c.616]

    Катализом называется ускорение химических реакций в присутствии определенных веществ (катализаторов), многократно химически взаимодействующих с реагентами, но не входящих в состав продуктов реакции [1]. Каталитический процесс включает в себя три этапа адсорбцию, химические превращения на поверхности и десорбцию. Каждый из этапов состоит из нескольких последовательных или параллельных стадий физического и химического взаимодействия промежуточных соединений на поверхности друг с другом и с компонентами газовой фазы. Суммарная скорость каталитического процесса зависит от скоростей его отдельных стадий. Несмотря на специфичность каталитического действия, сущность катализа едина и состоит в том, что катализатор, входя в состав промежуточных соединений, увеличивает степень компенсации энергии разрыва старых связей энергией, освобождаемой при образовании новых связей. Этим самым обеспечивается снижение энергии активации химической реакции. [c.8]

    Теория промежуточных соединений получила широкое признание в начале XX в. Активным сторонником и пропагандистом ее был П. Сабатье, считавший, что физические теории катализа вообще несостоятельны, так как ...они не могут объяснить ни специфичности катализаторов, ни замечательного разнообразия их действия . Он придавал совершенно особое значение промежуточному образованию нестойких соединений, которые и определяют направление и скорость реакций. В пользу этого он приводит большое число каталитических реакций, при которых можно выделить промежуточ- [c.88]

    Различные другие сплавы с медью- позволили установить, что активность во всех случаях нарастает с уменьшением содержания меди и со степенью упорядоченности структур. Эти наблюдения позволяют сделать вывод о роли геометрического фактора в катализе (стр. 137). Однако к такому выводу надо относиться с осторожностью, так как в ряде случаев активность, наоборот, растет с увеличением числа дефектов и деформаций решетки, т. е. с увеличением неупорядоченности структуры. Это указывает на сложность вопроса о специфичности геометрического фактора для разных катализаторов и их типов. [c.154]

    Вообще говоря, существуют еще три уровня специфического узнавания субстратов в ферментативном катализе. Давайте рассмотрим пептидную связь в полипептидной цепи. Боковая цепь Рг определяет нормальную специфичность фермента. Для а-химотрипсина Нг — это ароматическая боковая цепь, а гидрофобная полость (ароматическая щель) в активном центре предназначена для взаимодействия с аминокислотой, узнаваемой ферментом. Такую избирательность называют первичной структурной специфичностью. [c.235]

    Эти критерии весьма условны, однако в них в неявной форме выражена мысль, что только путем правильного выбора матрицы, способствующей сближению каталитических групп с субстратами, может быть сконструирован эффективный катализатор. Матрица не участвует активно в катализе, а только сближает и жестко закрепляет субстрат и каталитическую группу (пли группы) и правильно их ориентирует относительно друг друга Есть надежда, что матрица, подобно ферменту, будет в процессе связывания субстрата увеличивать энергию его основного состояния благодаря увеличению жесткости п искажению связи. К тому же правильное геометрическое соответствие между модельным катализатором и субстратом приведет к повышению специфичности и эффективности реакции. Эти соображения имеют фундаментальное значение в данной главе. [c.265]


    В заключение отметим чтобы модель фермента была действующей, она должна отвечать ряду критериев, характерных для ферментативного катализа, в том числе обладать субстратной специфичностью, т. е, селективно связывать субстрат. Каталитическая реакция, моделирующая ферментативный процесс, должна также подчиняться кинетике Михаэлиса — Ментен (явление насыщения субстратом) при этом должна увеличиваться скорость реакции и осуществляться би- и/или полифункциональный катализ [348], [c.265]

    Оба эти фундаментальных свойства ферментов (способность ускорять реакцию и специфичность катализа) часто взаимосвязаны, и эта [c.127]

    Ферментативный катализ тесно связан с жизнедеятельностью животных и растений. Все жизненно важные процессы в организмах управляются органическими катализаторами, называемыми ферментами или энзимами. Для ферментативного катализа характерны высокая специфичность и каталитическая активность, достигаемые при невысоких температурах и давлениях. В настоящее время ферменты все больше используются в промышленности. [c.362]

    Физикохимик. Работает в области ферментного катализа, специфичности ферментов и биока-талитической технологии. Совместно с А.П. Синициным и М.Л. Рабиновичем изучил механизм действия полиферментно-го целлюлозного комплекса. [c.152]

    Следующей важной особенностью катализа является специфичность действия катализатора. Нельзя рассматривап ь каталити — ческую активность как универсальное свойство катализатора. Многие катализаторы проявляют каталитическую активность в отношении одной или узкой группы реакций. Для каждой реакции целесообразно использовать свой наиболее активный и селективный ката — лизатор. [c.80]

    УстановАена определенная закономерность ме жду специфичностью каталитического действия и типом кристаллической структуры твердых тел. Каталитической активностью ионного и электронного типов обладают твердые тела соответственно с ионной и металлической кристаллической структурой, а также кристаллы промежуточного (ионно — металлического) типа. Молекулярные и ковалентные кристаллы в отношении катализа практически инер — ти ы. [c.88]

    К гидрокаталитическим в нефтепереработке относятся про — цессы, осуществляемые в среде водорода в присутствии катализа — торс В. По специфичности каталитического действия гидрокатали — тичс ские процессы можно классифицировать на следующие типы  [c.175]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]

    Реакции в жидкой фазе обычно протекают при темне )атуре 150—250 С и давлении 10—15 МПа, а в отдельных случаях — до 20,0 МПа [32]. Следует ожидать положительных результатов от применения н качестве катализаторов железа и меди в присутствии свободных кислот или только от действия кислот. Например, в работе [33] применялись соли серебра и ртути в присутствии галоидных кислот. В условиях гомогенного катализа изучалось влияние на скорость реакции HI и H2SO4 в малых концентрациях (5—10 %). При температуре 220 С и давлении 6,0—7,0 МПа удавалось за 28 ч перевести в алкоголь 45,1 % этилена. Более детальное изучение реакций гидратации олефинов в присутствии минеральных кислот, несомненно, поможет окончательно решить эту проблему в лабораторных масштабах, тем более, что теоретически минеральные кислоты в любой степени разбавлелия являются наиболее специфичными катализаторами жидкофазных реакций [34]. [c.20]

    Прекрасным примером каталитической реакции получения ароматических углеводородов является классический метод каталитической дегидрогенизации шестичленных нафтеновых углеводородов над платиновой или палладиевой чернью, разработанный Зелинским. При термическом крекинге циклогексана бензола практически не образуется, т. е. реакция дегидрогенизации в этих условиях не наблюдается. Продукты крекинга состоят в основном из открытых парафиновых и этиленовых углеводородов, образовавшихся в результате разрыва шестичленного ядра. В присутствии же платиновой или палладиевой уерни при температуре около 300° С наблюдается гладкая дегидрогенизация циклогексана (и других шестичленных нафтеновых углеводородов) без побочных реакций распада углеводородного ядра. Специфичность действия катализатора выражается также в-том, что-пятичленные нафтеновые углеводороды, парафины, а также двузамещенные (при одном углеродном атоме) циклогексаны, например-1,1-диметилциклогексан, вовсе не подвергаются дегидрогенизации в указанных условиях [Зелинский (66)]. Теоретическое обоснование-дегидрогенизационного катализа Зелинского разработано Баландиным (2) в его мультиплетной теории . [c.239]

    И. Берцелиус, как 13вестно, придерживался виталистической теории в органической химии, считая, что вещества, входящие в состав животных и растительных организмов, образуются в них под влиянием некоей жизне 1ной силы , недоступной, по И. Берцелиусу, человеческому познанию. В соответствии с этим и специфичность каталитических явлений И. Берцелиус приписывал проявлению непознаваемой и не связанной с материей силе (динамиде), которую он назвал каталитической силой , или таинственной силой (vis o ulta), а катализом—превращения веществ, происходящие [c.16]

    Понадобились работы М. Фарадея, Г. Дэви, Е. Митчерлиха, И. Деберейнера, Г. С. Кирхгофа, Ю. Либиха, И. Берцелиуса и многих других ученых того времени, чтобы установить специфичность каталитических реакций и необходимэсть новых трактовок для объяснения каталитических процессов. Однако первые теории страдали метафизическим идеализмом (И. Берцелиус) или механицизмом (Ю. Либих). На протяжении почти 70 лет в Западной Европе длился спор мэжду представителями витализма в катализе (Л. Пастер) и механицистами (Ю. Либих), который закончился появлением энергетической теории В. Оствальда, отрицавшей материю. [c.86]

    Известно, что ферменты проявляют три уровня специфичности структурную специфичность, региоспецифичность и стереоспецифичность. Во-первых, фермент должен узнать некоторые общие структурные свойства субстрата (и кофермента) для проведения специфического катализа. Во-вторых, каталитический акт должен произойти в определенном районе субстрата (или кофермента), причем стереохимия изменения контролируется ферментом. [c.207]

    Рентгеноструктурные исследования показали, что помимо серина-195 в активный центр входят также остатки гистидина (Н1з-57) и аспарагиновой кислоты (А5р-102). Другой остаток гистидина (Н1з-40) не участвует в катализе. Фермент обладает специфичностью к ароматическим аминокислотам. Эфиры ароматических аминокислот — хорошие субстраты этого фермента, и для большинства кинетических исследований в качестве субстратов использовались такие эфиры. Фермент расщепляет пептиды, освобождая карбоксильную группу ароматических аминокислот. После образования комплекса Михаэлиса единственный реакционноспособный 5ег-195 вначале ацилируется, образуя ацилферментное промежуточное соединение с субстратом. Превращение комплекса Михаэлиса в ацилфермент происходит сначала путем образования тетраэдрического интермедиата (разд. 4.4.1), и наконец происходит гидролиз ацилфермента при атаке молекулой воды, так что ацилированный продукт обычно не накапливается. [c.220]

    В заключение следует отметить, что в этой главе представлены различные модели ферментативных механизмов, в которых участвуют ионы металлов. Показано, что реакции, катализируемые ме-таллофермеитами или ферментами, активированными ионами металлов, удивительно разнообразны по типам. Естественно, что многие аспекты, такие, как необычайно высокая скорость и специфичность ферментативного катализа, пе получили полного объяснения па основании исследования модельных систем. Однако недостающее звено, возможно, как раз и удастся найти там, где структура биологических молекул отклоняется от модельных систем. Возможно, что при этом будут обнаружены наиболее химически интересные явления [258, 259]. [c.397]

    Основная задача физической химии биокатализа состоит в выявлении некоторой общности причин, обуславливающих уникальные свойства биологических катализаторов. Может показаться, что постановка такой задачи слишком контрастирует с тем положением, которое господствовало в энзимологии еще несколько лет тому назад, когда, несмотря на обширные качественные сведения о специфичности действия многих сотен ферментов, мы не имели,— как отмечает Уиль-. ям Дженкс (1969),— ни в одном конкретном случае сколь либо детального или количественного представления о движущих силах катализа [11. Однако с тех пор благодаря усилиям ряда научных школ произошли существенные сдвиги. Хотя и трудно отдать предпочтение тем или иным методическим подходам, однако вряд ли можно оспаривать важность вклада, который в решение поставленной проблемы внесли кинетико-термодинамические исследования. Они приобрели особое значение, когдэ в результате рентгеновских исследований структуры кристаллических ферментов появилась возможность трактовать их результаты на молекулярном уровне. [c.3]

    Представление об исключительно точном геометрическом соответствии молекулы субстрата активному центру фермента как об источнике высокой специфичности при ферментативном катализе послужило основой для исследования каталитических свойств молекул циклоамилоз, обладающих строгой и хорошо известной геометрией [891. Химически циклоамилозы представляют собой циклические полимеры, содержащие не менее шести Л(+)-глюкопиранозных структурных единиц, соединенных а-(1,4)-глюкозидными связями. Участок цепи циклоамилозы имеет следующий вид  [c.110]

    Однако наклон прямой б, соответствующей мицеллярной реакции, несколько меньше, чем в случае ферментативного процесса (пунктир). Это связано с тем, что алкоксильный анион в мицелле расположен в гидратированном поверхностном слое (а это снижает эффективность гидрофобного взаимодействия). Действительно, если нуклеофил несколько углублен в мицеллу, что происходит в случае бензимидазольного аниона [ПО], то специфичность мицеллярного катализа (точки на пунктире) вполне соответствует ферментативному (пунктир). Различия в константах скоростей реакций с участием наименее (ацетат) и наиболее гидрофобногЬ (гептаноат) субстратов превышают два порядка (рис. 29). [c.121]

    Изложенная концепция, которая качественным образом вскрывает причины специфичности фермента по отношению к структуре субстрата, представляет собой синтез взглядов ряда научных школ, рабо-таюш,их в области физико-органической химии и ферментативного катализа (Бендер, Дженкс, Брюс, Блоу, Ноулис, Бернхард, Гесс и др.). Ее количественное кинетико-термодинамическое обоснование (в приложении к химотрипсину, как одному из наиболее изученных ферментов) было получено прежде всего в исследованиях, проводимых в Московском университете [15]. В последующих параграфах будут детально рассмотрены наиболее важные, по-нашему мнению, аспекты этой проблемы. При этом будет сконцентрировано внимание именно на взаимосвязи между структурой и реакционной способностью субстратов и оставлены, по-существу, вне поля зрения ингибиторные подходы , изложенные весьма подробно в [16]. [c.135]

    Гидрофобное фермент-субстратное взаимодействие вносит важный вклад в специфичность химотрипсинового катализа (см. 2, 4, 5 этой главы). Это связано с тем, что составной нукЛеофил, входящий в активный центр фермента и принимающий участие в атаке сорбированной молекулы субстрата, расположен в поверхностном слое белковой глобулы [17—19, 66, 67]. Реакции, катализируемые химотрипсином, протекают таким образом вблизи поверхности раздела фаз вода — белок и сопровождаются термодинамически выгодным переносом (полным или частичным) гидрофобных фрагментов молекулы субстрата из одной среды (вода) в другую (белок). Свсбодная энергия такого рода гидрофобного взаимодействия, сопровождающего химическую реакцию между ферментом и субстратом, зависит от структуры субстрата, а также от геометрической конгруэнтности ее по отношению к активному центру (см. 5 этой главы). [c.150]

    Окисление широко используется для получения карбоновых кислот, альдегидов, кетонов, а-оксидов, хинонов, N-оксидов третичных аминов и ряда других классов органических соединений. Имеется большой набор окислителей, различающихся по окислительному потенциалу, специфичности действия. В качестве окислителей широко используются кислород, перманганат калия, хромовый ангидрид, хромовая смесь, азотная кислота, диоксид свинца, тетраацетат свинца, диоксид селена, пероксид водорода, надкисло-ты, хлорид железа (П1). Окисление кислородом рассмотрено в разделах Радикальное замещение и Гомогенный и гетерогенный катализ . [c.199]


Смотреть страницы где упоминается термин Катализ специфичность: [c.644]    [c.644]    [c.160]    [c.81]    [c.155]    [c.201]    [c.15]    [c.212]    [c.294]    [c.324]    [c.449]    [c.111]    [c.344]   
Краткий курс физической химии Издание 3 (1963) -- [ c.485 ]




ПОИСК





Смотрите так же термины и статьи:

Отрицательный катализ и специфичность

Специфичность ферментов и роль в катализе третичной структуры



© 2025 chem21.info Реклама на сайте