Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установка дистиллятной фракции

    Эффективная сепарация фаз в секции питания сложной колонны достигается установкой специальных сепараторов жидкости и промывкой потока паров стекающей жидкостью. Для этого режим работы колонны подбирают таким образом, чтобы с нижней тарелки сепарационной секции сложной колонны в нижнюю отпарную секцию стекал избыток орошения Рп, называемый избытком однократного испарения. Если принять расход избытка однократного испарения равным fn= (0,02—0,05)тогда доля отгона сырья должна быть примерно равна отбору дистиллятной фракции, поскольку е/= = Ог-1- (7 — т) и Рт=Рп. При правильной организации промывки и сепарации фаз после однократного испарения тяжелая дистиллятная фракция практически не содержит смолисто-асфальтеновых, сернистых и металлорганических соединений. [c.153]


    Получение дистиллятных фракций из. нефтяного сырья связано с нагревом нефти до 340—350 °С. Установлены следующие интервалы температур начала и конца кипения углеводородных фракций (с небольшими отклонениями, зависящими от технологического режима) бензины 62—140°С (180°С) керосины 140(180)—240°С дизельные топлива 240—300, 300—350 °С масляные фракции 350— 400, 400—450, 450—490 °С (500 °С) гудрон >490 °С (500 °С). Нефть нагревается до требуемой температуры в аппаратах огневого действия — печах соответствующей тепловой мощности. Для уменьшения тепловой мощности печей нефть предварительно нагревают за счет тепловой энергии вторичных энергоисточников на самой установке. Чем выше температура предварительного подогрева нефти, тем меньше тепловая нагрузка печи и расход сжигаемого топлива. [c.212]

    Ниже, в табл. 6.8 и 6.9 приведены результаты исследований, проведенных на промышленных установках фенольной очистки, соответственно деасфальтизатов и дистиллятных фракций по влиянию температур верха и низа экстракционных колонн на выход и качество рафинатов. [c.242]

    В висбрекик е второго типа требуемая степень конверсии достигается при более мягком температурном режиме (430-450°С) и длительном времени пребывания (10-15 мин). Низкотемпературный висбрекинг с реакционной камерой более экономичен, так как при одной и той же степени конверсии тепловая нагрузка на печь ниже. Однако при печном крекинге получается более стабильный крекинг-остаток с меньшим выходом газа и бензина, но с повышенным выходом газойлевых фракций. В последние годы наблюдается устойчивая тенденция утяжеления сырья висбрекинга в связи с повышением глубины отбора дистиллятных фракций и вовлечением в переработку остатков более тяжелых нефтей с высоким содержанием асфальто-смолистых веществ повышенной вязкости и коксуемости, что существенно осложняет их переработку. Эксплуатируемые отечественные установки висбрекинга несколько различаются между собой, поскольку были построены либо по типовому проекту, либо путем реконструкции установок АТ или термического крекинга. Различаются они по числу и типу печей, колонн, наличием или отсутствием выносной реакционной камеры. Типичный материальный баланс висбрекинга гудрона газ 1,5 - 3,5%, бензин 3 - 6,7%, компонент котельного топлива 88,4 - 94,7%, потери [c.67]


    Промышленные установки термической переработки ТНО существуют с 1912 г., когда были построены первые установки термического крекинга (ТК) для получения бензина. В США к 30-м годам мощности ТК достигли максимальных значений, затем из-за возросших требований к качеству автобензинов процесс ТК практически утратил свое значение и постепенно вытеснился каталитическими. В Европейских странах и (в СССР) развитие ТК задержалось приблизительно на 20 лет. В 60-х годах в этих странах произошло изменение целевого назначения процесса ТК - из бензинопроизводящего он превратился преимущественно в процесс термоподготовки сырья для установок коксования и производства термогазойля. Повышение спроса на котельное топливо, рост в нефтепереработке доли сернистых и высокосернистых нефтей и наметившаяся тенденция к углублению переработки нефти обусловили возрождение и ускоренное развитие процессов висбрекинга ТНО, что позволило высвободить дистиллятные фракции - разбавители гудрона и тем самым увеличить ресурсы сырья для каталитического крекинга. Висбрекинг позволяет использовать и такой альтернативный вариант, при котором проводятся гидрообессеривание глубо. овакуумного газойля с температурой конца кипения до 590 С, а утяжеленные гудроны подвергаются висбрекингу, после чего смешением остатка с гидрогенизатом представляется возможность для получения менее сернистого котельного топлива. Аналогичные тенденции в развитии термических процессов и изменения их целевого назначения произошли и в отечественной нефтепереработке. В настоящее время доля мощностей термического крекинга и висбрекинга в общем объеме переработки нефти составляет соответственно 3,6 и 0,6% (в США - 0,7 и 0,6% соответственно). Построенные в 30-х и 50-х годах установки ТК на ряде НПЗ переведены на переработку дистиллятного сырья с целью производства термогазойля, а на других - под висбрекинг. Однако из-за морального и физического износа часть установок ТК планируется вывести из эксплуатации. Предусматривается строительство новых и реконструкция ныне действующих установок ТК только в составе комплексов по производству, кокса игольчатой структуры в качестве блока термоподготовки дистиллятных видов сырья. Таким образом, мощности ТК, работающих на остаточном сырье, будут непрерывно сокращаться. Предусматривается несколько увеличить мощности висбрекинга за счет нового строительства и реконструкции ряда действующих установок ТК и АТ. [c.65]

    Первый опыт преследовал цели получения на атмосферной установке дистиллятных фракций, выкипающих до 210° и 210— 290°, которые в дальнейшем подвергались обесфеноливанию с последующим получением фенолов, используемых для опытных варок фенолформальдегидных смол и клеев. [c.191]

    На атмосферных нефтеперегонных установках нефть или смесь нефтей обычно разделяется на четыре дистиллятные фракции и остаток — мазут. Побочным продуктом является смесь углеводородных газов, часто содержащая сероводород, который образуется из нестойких соединений серы при нагреве нефти. [c.12]

    Современный нефтеперерабатывающий завод обязательно имеет установки гидроочистки прямогонных дистиллятных фракций — бензина, керосина, дизельного топлива, — что объясняется наличием дешевого водородсодержащего газа, получаемого в процессах каталитического риформинга, широкое внедрение которых началось в США с 1950 г., в СССР и Западной Европе — после 1960 г. [c.15]

    Из печи нагретый до высокой температуры мазут поступает в середину вакуумной колонны 2, куда подается водяной пар. Из вакуумной колонны отбирают две боковые дистиллятные фракции. Избыток тепла в колонне снимается двумя циркулирующими орошениями в теплообменниках 4 и 5. Тепло циркулирующих орошений используется для подогрева нефти, поступающей на установку. С низа вакуумной колонны отводится гудрон. Вакуум наверху [c.39]

    В котельных установках, также как и в газотурбинных установках, испаряемость топлива влияет на легкость запуска, полноту сгорания, геометрию факела, а следовательно, и форму температурного поля внутри топочного пространства. Все это имеет большое эксплуатационное значение. Однако в стандартах на остаточные топлива не предусмотрены показатели качества, непосредственно характеризующие указанное свойство. На практике необходимый уровень совершенства процесса сгорания в котельных установках достигают за счет обеспечения тонкого распыла топлива и регулирования его вязкости за счет подогрева. Вязкость флотских мазутов служит косвенным показателем их испаряемости, так как она в определенной степени характеризует содержание дистиллятных фракций в них. [c.183]

    Мощность комплекса по производству масел (в расчете на товарные масла) определяется заданием на проектирование и составляет обычно 3—5% (масс.) от общей мощности завода по нефти. Наиболее распространенная схема производства масел из парафинистых нефтей приведена на рис.- 2.3. Сырьем комплекса являются узкие дистиллятные фракции, получаемые при вакуумной перегонке мазута, и гудрон. Узкие фракции получают на комбинированных атмосферно-вакуумных трубчатых установках (АВТ) или отдельно стоящих вакуумных установках. Как показала практика, на отдельно стоящих вакуумных установках удается получить масляные фракции более высокого качества. [c.60]


    В последнее время ставится задача углубления переработки нефти и повышения качества нефтепродуктов. Эта задача на установках АВТ решается путем организации мероприятий, направленных на увеличение отбора дистиллятных фракций как в атмосферной, так и в вакуумной колоннах и обеспечение их четкого выделения. [c.27]

    Прн переработке средне- и маловязких дистиллятных фракций на некоторых установках фенольной очистки растворитель заранее обводняется, и очистка в противотоке осуществляется обводненным фенолом. Для того чтобы снизить кратность внутренней циркуляции промежуточных потоков, в экстракционной колонне при очистке масел фенолом устанавливается низкий температурный градиент. Обычно градиент не превышает 10 °С. В зависимости от качества перерабатываемого сырья температура верха меняется от 80 до 50 °С, а температура низа ог 70 до 40 °С. На верхнем пределе температур осуществляется очистка остаточных полупродуктов — деасфальтизатов, на нижнем — очистка маловязких турбореактивных и трансформаторных масел. В зависимости от вида перерабатываемого сырья меняется [c.246]

    В качестве объектов исследования были выбраны тяжелые нефтяные остатки и средние дистиллятные фракции прямой перегонки нефти и вторичных процессов, а именно гудрон с установки типа АВТ-6 [c.127]

    Повышение содержания кетона в растворителе. С целью повышения отбора парафина на установках проводились работы по увеличению содержания ацетона в растворителе, применяемом в процессах. обезмасливания. На некоторых установках (Грозненский НПЗ им. А. Шерипова, Ново-Уфимский НПЗ) содержание ацетона в растворителе достигает 50—55 объемн.%. Для легких дистиллятных фракций содержание ацетона в растворителе может быть еще выше. Например, при получении парафинов из дизельного топлива содержание ацетона может достигать 60 объемн. 7о. Применение растворителя с увеличенным содержанием ацетона способствует более полному выделению парафинов и позволяет вести процесс при более высоких температурах. В случае использования растворителя с повышенным содержанием компонента, осаждающего парафин, состав растворителя должен обеспечивать (при заданной кратности разбавления) полную растворимость нежелательных компонентов при температуре охлаждения суспензии. В противном случае нерастворенная масляная фаза вследствие высокой вязкости не отфильтровывается, а остается в слое осадка и плохо вымывается при холодной промывке. Содержание масла в парафине при этом резко возрастает, [c.153]

    В настоящее время на Кременчугском НПЗ на установке Г-37 схема двухступенчатой очистки фурфуролом дистиллятных фракций смонтирована и начато ее освоение. [c.114]

    На вакуумной ступени установки ЭЛОУ — АВТ-6 мазут дополнительно нагревается в печи и поступает в вакуумную колонну. Получаемая в ней щирокая фракция в зависимости от характеристики нефти и последующего использования имеет пределы выкипания 350—460 и 350—490 °С. Она может быть использована для производства дистиллятных масел или как сырье каталитического крекинга и гидрокрекинга. Иногда на этих установках с одной или двумя вакуумными колоннами получают более узкие дистиллятные фракции для производства масел 300—400, 350—420, 420— 460 (или 420—490 °С). Они могут быть получены и при перегонке мазута на отдельных вакуумных установках. Во всех случаях перегонку мазута ведут в вакууме, при котором понижается температура кипения углеводородов это позволяет при 410—420 °С отобрать дистилляты, имеющие температуры кипения при атмосферном давлении до 500 °С. При получении масляных дистиллятов разложение их сводят к минимуму, повыщая расход водяного пара, снижая перепад давления в вакуумной колонне и т. д. Вакуум (остаточное давление 8,1 —10,8 кПа) создается в колонне путем конденсации паров в барометрических конденсаторах смещения, а в последнее время, особенно на вновь сооружаемых установках, — в поверхностных конденсаторах кожухотрубчатого типа. При этом исключается непосредственный контакт между парогазовой смесью и охлаждающей водой (меньще потерь). [c.22]

    Как известно, единственным промышленно освоенным процессом, позволяющим снизить вязкость прямогонных остатков и получить из них котельные топлива, является процесс термического крекинга. На современных НПЗ получили распространение установки термического крекинга, имеющие печь легкого крекинга, где крекируются тяжелые остатки, и печь глубокого крекинга где крекируются получаемые при легком крекинге средние дистиллятные фракции до бензина. Все эти установки спроектированы на переработку легких мазутов, при крекинге которых преследуется основная цель — увеличить выход бензина. Схема установки и конструкции аппаратов рассчитаны на крекинг легкого сырья (мазутов) при сравнительно мягких режимах. Температура на выходе из первой печи даже при крекинге мазута не превышает 480°С. Если для таких условий крекинга схемы и конструкции аппаратов, особенно конструкции печей, были приемлемы, то при крекинге остатков арланской нефти сохранить режим крекинга, не говоря уже об ужесточении его, оказалось практически невозможным. Высокое содержание асфальто-смолистых вешеств в остатках вызывает резкое сокращение циклов работы установки, что не позволяет ужесточить режим крекинга. Крекинг же при мягких режимах, как сказано выше, не обеспечивает достаточного снижения вязкости. Поэтому до недавнего времени стандартные по вязкости котельные топлива получали в основном на установках АВТ за счет снижения отбора светлых нефтепродуктов на АТ. Вакуумные части установок в некоторых случаях исключались из работы. [c.136]

    Производство технического углерода (сажи) — узкоспециализированное производство основанное на переработке углеводородного сырья в паровой фазе. На качество продукции и экономическую эффективность производства большое влияние оказывают качество сырья, которое в промышленных условиях получается на установках термического крекинга и пиролиза, а также путем экстракции концентрата ароматических углеводородов из дистиллятных фракций деструктивных процессов. [c.16]

    При переработке средне- и маловязких дистиллятных фракций на некоторых установках фенольной очистки растворитель заранее обводняется, и очистка в противотоке осуществляется обводненным фенолом. Для того чтобы снизить кратность внутренней циркуляции промежуточных потоков, в экстракционной колонне при очистке масел фенолом устанавливается низкий температурный градиент. Обычно градиент не превышает 10 °С. В зависимости от качества перерабатываемого сырья температура верха меняется от 80 до 50 °С, а температура низа от 70 до 40 °С. На верхнем пределе температур осуществляется очистка остаточных полупродуктов — деасфальтизатов, на нижнем — очистка маловязких турбореактивных и трансформаторных масел. В зависимости от вида перерабатываемого сырья меняется и кратность разбавления масляных фракций растворителем. При переработке остаточного сырья кратность отношения меняется от 4 1 до 3 1, а при очистке дистиллятных фракций от 2 1 до 1,5 1,0. С утяжелением сырья снижается и степень обводненности фенола. Давление в колонне фенольной очистки атмосферное. [c.246]

    Из средней части колонны 16 насосом 18 выводится дистиллятная фракция 150—250°С, которая подогревает воду в теплообменнике 8, этан-пропа-новую фракцию в теплообменнике 6 и охлаждается воздухом в аппарате 9. Часть этой фракции циркулирует в качестве квенчинга через колонну 11, а балансовое количество идет в промежуточный парк установки. [c.36]

    По качеству газы и дистиллятные фракции процессы ТКК бл1[зки к аналогичным продуктам замедленного коксования. Жидкие продукты ТКК, содержащие значительное количество непредельных соединений, ароматических углеводородов, серы и азота, обычно подвергают гидрогенизационной обработке на установках гидроочистки со стационарным слоем катализатора. Во многих случаях такую обработку осуществляют в смеси с прямогонными фракциями, полученными на том же НПЗ. Бензины ТКК часто в смеси с газойлем используют как сырье каталитического крекинга (тритинг-процесс). Тяжелый газойль после гидроочистки, как правило, направляют вместе с прямогонным вакуумным газойлем на каталитический крекинг. [c.78]

    Установка будет перерабатывать дистиллятные фракции сураханской отборной, карачухурской верхнего отдела, сиазанской и др. парафинистых нефтей. [c.153]

    Первый путь заключается в эксплуатации установок ГК в режиме низких степеней превращения — варианты ЛГК- По аналогии с переработкой дистиллятного сырья ЛГК остатков можно осуществить на установках гидрообессеривания (ГОС). Так, модификацией процесса ГОС является процесс ЛГК — вое — юнибон (фирма ЮОП, США), обеспечивающий превращение гудрона в дистиллятные фракции на 30—40% и его обессеривание на 70—80%. Фирмой Келлог (США) исследована модификация ЛГК, заключающаяся в избирательной конверсии смол тяжелого сырья, в результате которой образуется значительное количество легких дистиллятов и обессеренное сырье ККФ. Существуют различные варианты включения установок ЛГК остатков в общую схему НПЗ, обеспечивающие высокую гибкость в отношении производства моторных топлив, например ЛГК в сочетании с последующей деасфальтизацией или термической обработкой. Такие комбинированные установки внедрены на некоторых зарубежных НПЗ. В частности, на заводе в г. Сасолбурге (ЮАР) функционирует установка, состоящая из двух последовательных секций ЛГК юнибон — ВОС и термического крекинга. [c.120]

    В настоящее время в Японии действует промышленная установка термо-крекинга с перегретым водяным паром мощностью 1 млн. т/год, на которой при переработке гудрона нефти Хафджи получают 650 тыс. т дистиллятных фракций и 300 тыс. т высококачественного пека с высокой температурой размягчения, используемого в качестве связующего при производстве металлургического кокса (табл. V. 16). [c.128]

    Непрерывный процесс контактного коксования в псевдоожи-женном слое (на порошковом коксовом теплоносителе) в США вначале развивался довольно быстро, однако за последнее пятилетие рост мощности таких установок приостановился. Установки такого типа высокопроизводительны, на них вырабатываются дистиллятные фракции удовлетворительного качества и с высокими выходами на сырье, но кокс, получаемый в этом процессе, пока используется главным обрзлзом в качестве топлива. Процесс контактного коксования на гранулированном коксовом теплоносителе (размер зерен 3—15 мм) не вышел из стадии полузаводских испытаний. [c.8]

    Наибольшим значением Ку.р. и наименьшим Крел- характеризуется кокс из крекинг-остатка, полученный в кубах. Кокс из того же сырья имеет меньший Кур и больший /Срел., если он по лучается в печах из огне упоров, в контактных про цессах или на установке за медленного коксования, т. е последние обладают лучши ми прессовыми характери стиками. Предварительный отгон дистиллятных фракций от крекинг-остатка или предварительное окисление крекинг-остатка кислородом воздуха улучшает прессовые характеристики кокса. [c.178]

    По топливной схеме, предусматривающей, как показывает ее название, максимальное получение из нефти топлива, мазут может быть переработан 1) на установке термического крекинга, где из него получают также топливные продукты — автомобильный бензин, крекинг-керосин, газ и крекинг-остаток. Последний может быть переработан на установках коксования и из него можно получить добавочное количество бензина, керосино-соляро-вую фракцию (дистиллят коксования), являющуюся сырьем для каталитического крекинга, газ и кокс 2) вакуумной перегонкой с получением широкой дистиллятной фракции (350—500°) и гудрона в остатке. Широкая фракция поступает в качестве сырья на установку каталитического или термического крекинга, а следовательно, опять перерабатывается на топливо. В результате каталитического крекинга широкой фракции получают автом бильный бензин, легкий газойль, являющийся компонентом дизельного топлива, и тяжелый газойль, используемый [c.53]

    Процесс коксования на установке с необогреваемыми камерамж наиболее целесообразно применять в тех случаях, когда тяжелые нефтяные остатки перерабатываются с целью углубления переработки нефти и повышения выхода светлых. Кокс при этом является не целевым, а побочным продуктом. Для получения же в качестве целевого продукта широкой дистиллятной фракции— сырья для термического и каталитического крекинга — установка замедленного коксования с необогреваемыми камерами выгодна отличается от других установок высокой производительностью, кодшактностью и более совершенным способом выгрузки кокса. [c.333]

    На структурность и дисперсность технического углерода и экономическую эффективность производства большое влиянне оказывает качество ирнменяемого сырья, температура в реакторе, соотношение расходов сырья, воздуха и топлива, укрупнение и совершенствование аппаратуры и оборудования и другие факторы. Наибольшее значение имеет получение высококачественного сырья. В промышленных условиях сырье для производства сажи получают на установках термического крекинга при работе на дистиллят-ном сырье и пиролиза (пиролизные смолы), а также путем экстракции концентрата ароматических углеводородов из дистиллятных фракций деструктивных процессов. [c.8]

    В настояи ее время в производстве электроэнергии, в силовых установках и химической промышленности используются большие количества остаточных топлив, в основном получаемых из нефтяного сырья путем смешения остатков нефтепереработки с более дорогостоящими дистиллятными фракциями (для получения желаемых характеристик топлив, в частности снижения содержания серы путем разбавления). [c.330]

    На рис. 59 представлена схема процесса ФИН-Басф . Этот процесс предназначен для гидрокрекинга тяжелых вакуумных дистиллятов. В 1-й ступени процесса происходит глубокая гидроочистка сырья с одновременным его гидрокрекингом. Жидкие продукты после 1-й ступени подвергаются разделению в сепараторах и ректификационной колонне. В этой колонне отбираются фракции легкого и тяжелого бензина, а также дистиллятная фракция, которая является сырьем для 2-й ступени установки. [c.284]

    В последнее время практикуется строительство установок первичной переработки нефти - установок типа АТ, так называемых мини-НПЗ непосредственно на нефтепромыслах или на объектах, приближенных к ним. Основными продуктами переработки нефти на установках АТ являются широкая фракция легких углеводородов (ШФЛУ), дизельная фракция и мазут. Однако при этом варианте переработки нефти значительная часть средних дистил-лятных фракций используется нерациона тьно. На наш взгляд, боковые побочные дистиллятные фракции (погоны, отгоны), получаемые при атмосферной перегонке нефти на установках АТ, целесообразно использовать в качестве исходных компонентов для получения таких жидкостей специальното назначения, как антикоррозионная (консервационная) для скважин, эмульгатор обратных водонефтяных эмульсий и сами эмульсии для различных процессов нефтедобычи, а также топлива для судовых дизелей. [c.63]

    Дистиллятная фракция кислот подвергалась гидрированию на опытной установке. Гидрирование проводилось на цинкхро-мовом катализаторе. Основные параметры процесса гидрирова- [c.38]

    Первыми крупномасштабными экспериментами, подтвердившими возможность интенсификации процесса перегонки нефтяного сырья путем внешних воздействий на него, в частности введением модифицирующих добавок, явились промышленные испытания в феврале 1980 года, проведенные при непосредственном участии автора на Ново-Уфимском НПЗ. В качестве объекта исследования был выбран вакуумный блок установки АВТМ-2. В сырье установки в течение эксперимента добавляли от 2 до 12% мае. экстракта селективной очистки 3-й масляной фракции 350-420°С. Параметры процесса оставались практически постоянными на протяжении всех экспериментов и не отличались от существующих режимов нормальной работы технологической установки. Экспериментами было показано, что в присутствии ароматического концентрата суммарный выход дистиллятных фракций повышался. При этом максимальное увеличение выхода на 5,7% было при введении в исходное сырье 2,1 % мае. добавки. Качество получаемых дистиллятных фракций отвечало требованиям стандарта предприятия. [c.194]

    Пущенная в США в эксплуатацию установка коксования имеет мощность 6700 M l ymKU перерабатываемого гудрона. Сырье набрызгивается на частицы коксового теплоносителя, находящиеся в исевдоожиженном слое. При этом жидкая часть сырья полностью распадается, образуя газ, испаряющиеся дистиллятные фракции и кокс, остающийся на первоначальной коксовой частице. Продукты коксования через циклонные сепараторы выводятся из реактора в скруббер, расположенный на верху реактора. Из скруббера в качестве бокового погона выводится тяжелая газойлевая фракция — сырье для каталитического крекинга более тяжелые фракции с низа скруббера но специальному отводу возвращаются в реактор. С верха скруббера отводятся газы, бензин и фракция легкого газойля, которые поступают в ректификационную колонну. [c.74]

    В качестве снрья для исследования была принята дистиллятная фракция запедносибйрской нефти, полуденная на пилотной установка АЗТ. [c.79]


Смотреть страницы где упоминается термин Установка дистиллятной фракции: [c.34]    [c.139]    [c.132]    [c.119]    [c.261]    [c.242]    [c.115]    [c.136]    [c.47]    [c.139]   
Технология переработки нефти и газа (1966) -- [ c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте