Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая дисперсионный

    Путем исследования диаграмм Дебая — Шеррера удалось установить кристаллическую структуру частиц многих золей. Особенно хорошие результаты были получены при исследовании золей тяжелых металлов и их соединений, так как способность рассеяния лучей тяжелыми атомами весьма велика, а дисперсионная среда здесь сравнительно мало мешает анализу. При этом было выяснено, что структура дисперсной фазы сильно зависит от метода приготовления и возраста золя. О работах В. А. Каргина и 3. Я. Берестневой, показавших, что старение золей, как правило, связано с кристаллизацией дисперсной фазы, будет сказано в гл. УП1, посвященной синтезу золей. [c.53]


    Так как ориентация р, ЗАТ в дисперсионной области лишь частично и со сдвигом фаз следует изменению электрического поля, возникает явление абсорбции. Для единообразного описания всей области частот, включая дисперсионную область с абсорбцией, Дебай ввел величину комплексной диэлектрической проницаемости (ДП) е [17, 18].  [c.114]

    Дисперсионный эффект возникает при взаимодействии любых атомов и молекул независимо от их строения и полярности. Характерной особенностью дисперсионных сил является их универсальность. В основе квантовомеханической теории, объясняющей природу дисперсионного эффекта (Дебай, 1930), лежит представление о синхронизации движения мгновенных диполей взаимодействующих частиц. [c.135]

    Взаимодействие атомов и молекул. Силы Ван-дер-Ваальса могут слагаться из трех компонент 1) диполь-дипольного взаимодействия (силы Кеезома) 2) индукционного взаимодействия (силы Дебая) 3) дисперсионного взаимодействия (силы Лондона). Существование первых двух типов взаимодействий предполагает наличие по крайней мере наведенного дипольного момента у обеих молекул. Между неполярными молекулами действуют только дисперсионные силы, которые обусловлены флуктуациями зарядов, возникающими вследствие движения электронов. Электронные флуктуации в атомах или молекулах приводят к появлению изменяющихся во времени диполей. Взаимное влияние флуктуационных диполей вызывает фазовый сдвиг колебаний (при малых расстояниях он составляет 0°) и поэтому две неполярные молекулы всегда притягиваются друг к другу. [c.31]

    Следует отметить, что в теории Дебая имеется ряд слабых мест. Например, предполагается, что все упругие волны Б решетке имеют одну и ту же скорость. Дисперсионный закон, использованный при выводе соотношения (4.22), имеет вид и = с/(, где Л = 2яД представляет собой волновое число. Таким образом, теория Дебая не учитывает дисперсию (частотную зависимость) скорости упругих волн. В соответствии с этим в теории Дебая предполагается, что граничная максимальная частота со, для всех волн, возбуждаемых в решетке, одинакова, [c.111]

    Разлагая [бТа- > по собственным функциям Я ., относящимся к возбужденным состояниям, можно показать, что первые члены в АЕ и АЕ равны нулю. Оставшиеся выражения, а также АЕч и АЕ , зависят от деформации электронного распределения одной системы под влиянием другой и являются поэтому аналогом индукционного взаимодействия Дебая. А 6 зависит от взаимного возмущения обеих систем. Применяя метод возмущения для определения бТ ) и 6Т2>, можно выделить в АЕ слагаемые, соответствующие дисперсионным силам Лондона. [c.39]


    Дисперсионный эффект (эффект Дебая — Фалькенгагена) [c.485]

    По Лондону и Дебаю, когезионные силы подразделяются на дисперсионные, индукционные и дипольные. [c.16]

    Если в выражении (245) а равно нулю, то уравнение переходит в известное предельное соотношение для высокочастотной проводимости, предложенное Дебаем и Фалькенгагеном. Этот дисперсионный эффект для проводимости и диэлектрической проницаемости был предсказан теоретически и подтвержден количественно в ряде случаев (более подробно см. [2]). Впервые введенная Дебаем и Фалькенгагеном величина О, входящая в выражение (245), обозначает время релаксации ионной атмосферы. [c.76]

    В. Гарди. Высказанная им, по ассоциации с известными работами Ленг-мюра, гипотеза ориентации молекул на поверхности твердой фазы нашла исчерпывающие экспериментальные подтверждения в рептгено-и электронографических, а также электрометрических исследованиях ряда ученых (Е. Мюллер, И. Трийа, П. И. Лукирский и А. В. Иоффе и др.). На основе этих работ в науке более 30 лет существует идеальная схема структуры и механизма скольжения граничных смазочных слоев в виде пресловутой колоды карт . Указанная схема, качественно объясняя механизм граничного скольжения, не дает, однако, никаких сведений о втором фундаментальном свойстве смазочных слоев — чрезвычайно высокой их механической прочности иа сжатие (раздавливание, вытеснение). Неясной оставалась и природа сил, определяющих указанные свойства этих слоев. Автором было показано [1], что в определении механических свойств граничных слоев участвует ряд категорий сил ориентационные Дебая, дисперсионные Лондона, химические (в случае хемисорбции) и ковалентные тетраэдрической алмазоподобной структуры метиленовых цепей. [c.119]

    В дальнейшем выяснилось, что ассоциации могут подвергаться также одноименно заряженные Hotibi, обладающие большими р ззмерами и малыми зарядами, как, папример, ионы органических красителей, пикраты, перхлораты и др. Очевидно, что в этом случае за ассоциацию ответственны не кулоновские, а близкодействующие, в частности дисперсионные, силы. Эти силы не учитываются теорией Дебая — Гюккеля, и ее приложимость к таким — переходным к коллоидным—системам должна быть весьма ограниченной, что подтверждается опытными данными. [c.98]

    Кроме рассмотренного дисперсионного взаимодействия между двумя молекулами существует также простое дипольное взaи ю-действие (Кеезом, 1915—1921 гг.) или взаимодействие индуцированных диполей (Дебай, 1920—1921 гг.), если хотя бы одна из молекул обладает постоянным дипольным моментом. И в этом случае энергия обратно пропорциональна шестой степени расстояния между молекулами, но, по-видимому, два последних взаимодействия играют очень малую роль в полном взаимодействии между конденсированными фазами, определяющем А я, так как они неаддитивны, вследствие чего их суммарный эффект сильно снижается. Поэтому при расчете A J, даже в случае сильнополярных молекул (Н2О, МНз) компонентами Кеезома и Дебая, которые превосходят лон-доновскую компоненту в энергии взаимодействия отдельных молекул, в настоящее время пренебрегают [2]. [c.171]

    Избирательность неподвижной жидкой фазы определяется силами взаимодействия между молекулами растворенного компонента и жидкой фазы. Согласно предыдущему эти силы можно разделить (как и в случае ГАХ) на четыре типа 1) силы между постоянными диполями анализируемого вещества и жидкой фазы (ориентационный эффект Кезома) 2) силы между постоянными диполями растворенного вещества и индуцированными диполями неподвижной фазы (индукционный эффект Дебая) 3) силы, действующие между неполярными молекулами растворенного вещества и неполярными молекулами неподвижной жидкой фазы (дисперсионный эффект Лондона) 4) специфические и- химические силы взаимодействия (водородная, донорно-акцепторная и другие виды связи). Поэтому выбор жидкой фазы производят в основном в зависимости от поляр ности жидкой фазы. Различия в удерживаемых объемах на жидких фазах различной полярности могут быть объяснены результатом взаимодействия сил, упомянутых выше. [c.110]

    Второй род сил, влияющих на устойчивость золя,— силы притяжения между частицами. Они имеют ту же природу, что и силы, действующие между нейтральными молекулами. Существованием этих сил Ван-дер-Ваальс объяснял свойства реальных газов и жидкостей. Возникновение межмолекулярных сил обусловлено взаимодействием диполей (эффект Кеезома), поляризацией одной молекулы другой (эффект Дебая) и особого рода взаимодействием, которое объяснимо в рамках квантовой механики. Последний тип сил, называемых дисперсионными силами Лондона, связан с наличием в нейтральных атомах и молекулах мгновенных диполей. Взаимодействие таких диполей, являющихся результатом движения электронов в атомах и молекулах, не зависит от постоянных диполей и служит причиной их взаимного притяжения. Ф. Лондон показал, что такой тип взаимодействия превосходит эффекты Кеезома и Дебая. Энергия лондонозского взаимодействия между двумя атомами, находящимися на расстоянии г, обратно пропорцио- [c.112]


    Представления о природе адсорбционных сил следовали, таким образом, за разработкой теории вандерваальсовых сил, которая развивалась, в свою очередь, вслед за теорией строения вещества. Теория Бора привела к представлениям Кизома и Дебая о дипольных составляющих межмолекулярного взаимодействия, квантовая механика — к теории дисперсионной составляющей (Лондон). [c.132]

    С увеличением концентрации электролита возникает необходимость учитывать и некулоновскую часть межионного взаимод., для чего прибегают к нек-рым моделям. При этом наряду с индукционным, дисперсионным, обменным и др. видами межчастичных взаимод. некулоновский потенвдал учитывает сольватац. эффекты, связанные с влиянием р-ри-теля. В частности, учет некулоновской части взаимод. стабилизирует уменьшение коэф. активности иоиов с концентрацией и может объяснить их увеличение, наблюдаемое экспериментально. Наипростейшей ионной моделью Р. э. является модель заряженных твердых сфер (т. наз. примитивная модель). Первые попытки описания примитивной модели были выполнены в рамках теории Дебая - Хюккеля (второе приближение). Более корректно учет размера ионов и неку-лоновского взаимод. осуществляется на основе методов статистич. термодинамики (см. Жидкость). [c.192]

    Начавшееся физическое изучение белковых молекул со временем приобретает исключительно важное значение. Физика привнесла в эту область строгость и глубину своих воззрений и концепций, количественные теоретические и экспериментальные методы. Квантовая механика, работы В. -Кеезома (19 6 г.), Д. Дебая (1920 г.), В. Гейглера и Ф. Лондона (1928 г.), Ф. Хунда (1928 г.), Э. Хюккеля (1930 г.), Дж. Леннарда-Джонса (1931 г.), Л. Полинга (1936 г.) и многих других физиков подвели черту под развитием классической органической химии и заложили основы современной теоретической химии (квантовой механики молекул или квантовой химии). Они показали, что помимо валентных взаимодействий атомов существуют и могут оказывать заметное влияние на химическое поведение и формообразование молекул, особенно макромолекул, ранее не принимавшиеся во. внимание невалентные взаимодействия атомов (дисперсионные, электростатические, торсионные, водородные связи). Для познания белков, чувствительных к внешним условиям, использование физических и физико-химических методов, гарантирующих, как правило, не только химическую, но и пространственную целостность молекул, имело важное, часто определяющее значение на всех этапах исследования белков от выделения и очистки до установления пространственной структуры и выяснения механизмов функционирования. [c.66]

    Обычное ван-дер-ваальсово взаимодействие дипольных молекул, определяющее их взаимное притяжение, слагается из трех эффектов ориентационного (впервые рассмотренного Кезомом), индукционного (рассмотренного Дебаем) и дисперсионного (рассмотренного Лондоном). Если молекулы лишены собственного дипольного момента, то между ними действуют лишь дисперсионные силы. [c.191]

    Теория де Бура — Цвиккера подверглась суровой критике Брунауэра [18], основное возражение которого заключалось в том, что эффект поляризации недостаточно велик. Это привело к почти полному забвению поляризационной теории. Однако некоторые новые данные показывают, что в этой теории все же имеется рациональное зерно. Бьюиг и Зисман [64], в частности, показали, что адсорбция н-гексана на различных металлах приводит к значительному изменению поверхностного потенциала АУ, соответствующему довольно большому индуцированному дипольному моменту порядка 0,3 дебая (В). Согласно-расчетным данным, для индуцирования такого диполя на молекулах н-гексана на поверхности должно быть поле напряженностью около 10 В/см. Значительное изменение АУ обнаружено и при адсорбции инертных газов на металлах [65]. Так, по данным Притчарда [66], при адсорбции ксенона на меди, никеле, золоте и платине при —183°С значение АУ меняется от 0,2 до 0,8 В, причем в момент завершения образования монослоя наклон зависимости АУ от V резко уменьшается. По мнению Бенсона и Кинга [67], адсорбция инертных газов на окиси алюминия в значительной мере определяется локальными электрическими полями. Поверхность графита, по-видимому, также характеризуется сильным полем, обусловленным разделением д-электронов и положительно заряженных атомов углерода. В последнее время получены спектроскопические данные (гл. XIII, разд. Х1П-4), свидетельствующие о значительной поляризации адсорбированных частиц. Как показано в разд. XIV-10, даже на поверхностях молекулярных кристаллов дисперсионным силам можно приписать только часть энергии адсорбции. Более того, на поверхностях, покрытых прослойками предварительно адсорбированных инертных веществ, потенциальное поле убывает почти экспоненциально. Таким образом, можно считать доказанным, что в общем случае адсорбция в первом слое больше определяется электростатическим поляризационным взаимодействием (уравнение (У1-38), гл. VI), чем дисперсионными силами. [c.463]

    Дисперсионная кривая, полученная из формулы (1.42), более ЮЛогая, а абсорбционная кривая имеет в максимуме меньшее значение, чем кривые, построенные по формулам Дебая (рис. 7). [c.22]

    Связи, обусловленные вандерваальсовыми силами. Эти силы слагаются из трех эффектов 1) взаимодействие постоянных диполей— ориентационный эффект (Кеесом) 2) взаимодействие постоянных и индуцированных диполей — индукционный эффект (Дебай) 3) квантово-механическое взаимодействие колеблющихся электронов — дисперсионный эффект (Лондон). Связи, обусловленные вандерваальсовыми силами, являются слабыми — энергия связи 3 ккал моль — и обычно служат причиной образования непрочных соединений между молекулами (водные соли, ассоциация молекул) или атомами (например, Н Кг, жидкие благородные газы). [c.19]

    Силы притяжения, которые вызываются поляризацией отдельных атомов, т. е. смещением зарядов в них под действием электрических полей, создаваемых постоянными электрическими моментами эти силы всегда ведут к притяжению. Их потенциал мы назовем индукционным эффектом или также эффектом Дебая (Debye) Часть, привносимая к суммарному внутримолекулярному потенциалу этими силами, у диполей мала, и ею можно пренебречь. Наибольшую же часть, вообще, составляет дисперсионный эффект. [c.16]

    Это выражение позволяет вычнелить по цетодам статистики уравне-, ние состояния, а следовательно и постоянную а Ван-дер-Ваальса. В отличие от старой теории Дебая-Кезома, применение дисперсионной теории Лондона приводит к значениям постоянной а Ван-дер-Ваальса, которые достаточно хорошо согласуются с найденными экспериментально из критических данных.  [c.185]

    При этом получается, что силы сцепления вызываются в большей мере дисперсионным эффектом Лондона, чем индукционным эффектом Дебая или направляющим действием по Кезому, последние отсутствуют у молекул благородных газов, обладающих шаровой симметрией. [c.185]

    Уравнение (1) показывает, что внещнее давление меньше динамического давления на величину a v . Это подразумевает притягательные силы между молекулами, а константа Ван-дер-Ваальса а дает меру этих притягательных или кохезионных сил. Непосредственная причина увеличения сил притяжения менеду незаряженными молекулами на больших расстояниях не очевидна поэтому не является неожиданным, что проблема ван-дер-ваальсова притяжения не была успешно разрешена вплоть до недавних лет. Природа этих сил уже давно предполагалась электростатической, так как гравитационные или магнитные силы слишком малы, чтобы объяснить наблюдаемое притяжение. И действительно, мы знаем теперь, что имеются три электростатических эффекта, которые совместно объясняют притягательные силы Ван-дер-Ваальса ориентационный эффект Кизома, индукционный эффект Дебая и дисперсионный эффект Лондона. [c.251]

    Omнa ameл.нoяL , oam. воздуха,В их состав, имеют неполярные С—Ы связи, не образуют водородных связей с молекулами воды и силы взаимодействия их с молекулами воды ограничиваются в основном индукционными силами Дебая и дисперсионными силами Лондона. Молекулы воды, растворенные в углеводородах, находятся в неассоциированном состоянии (30) уменьшение коэффициента к в уравнении Генри с повышением температуры связано, по-видимому, со снижением индукционных сил взаимодействия. [c.28]

    Этот метод является абсолютным, не требующим калибровки, так как в константу Дебая Н входят либо известные величины X, Ма, либо измеряе.мые п и йп1с1с. Показатель преломления раствора с достаточной степенью точности можно считать равным показателю преломления растворителя, п = По. Производная dn/d должна быть измерена с большой точностью [ в уравнение (У.26) входит ее квадрат], что достигается с помощью интерферометра. Метод дисперсионного анализа, основанный на измерении светорассеяния, дает среднее объемное (массовое) значение массы (или размера) частицы. [c.306]

    Константа Ь характеризует величину сил отталкивания между молекулами и представляет собой меру объема, занимаемого самими молекулами. Измеряемое внешнее давление меньше динамического на величину а/о из за наличия силы притяжения между молекулами. Величина а характеризует интенсивность сил взаимодействия между молекулами, которые обуславливают процессы конденсации и физической адсорбции веществ. Хотя молекулы являются электрически незаряженными частицами, природа ван-дер-ваальсовых сил притяжения между молекулами является электростатической, так как гравитационное и магнитное взаимодействие очень мало. Известны три электростатических эффекта, объясняющие ван-дер-ваальсово притяжение ориентационный эффект Кизома, индукционный эффект Дебая и дисперсионный эффект Лондона- [c.6]

    Между электрокинетическим движением и движением в электрическом поле любой заряженно, частицы (например, иона в растворе) нет никакого принципиального различия. Эго признано многими авторами, но упор, который делают Мак-Бэйн и Лэйнг на этой тождественности, является вполне своевременным, так как некоторые авторы в своих работах, посвящённых -пoтeнциaлy начали терять из вида это обстоятельство. Если заряженными телами, движущимися в жидкости под действием электрического поля, являются малые частицы — ионы, то это движение называется электролитической миграцией и изучается в электрохимии. Разностям потенциалов вблизи и вокруг ионов уделялось мало внимания, пока не появилась теория Дебая-Гюккеля, после чего их значение получило должное признание. Если заряженные тела несколько крупнее — например, коллоидные частицы или частицы в суспензиях — явление называется катафорезом . В случае достаточно крупного твёрдого тела, соприкасающегося с жидкостью (капиллярная трубка, наполненная жидкостью или твёрдая перегородка, пропитанная жидкостью), принято говорить о движении жидкости, а не твёрдого тела, и это движение называется электроэндосмосом . Наконец, существуют также явления, обратные эндосмосу и катафорезу потенциалы истечения — электрические поля, возникающие при пропускании жидкости через капилляр или пористую перегородку, и эффект Дорна — возникновение градиента потенциала при падении взвешенных в жидкости частиц. Эти явления также принадлежат к разряду электрокинетических. Методы измерения скорости электрокинетического движения подробно описаны в некоторых из цитированных выше обзоров. К числу этих методов принадлежат (при катафорезе) различные виды У-образных трубок, в которых наблюдается перемещение границы суспензии методы, связанные с переносом, аналогичные методу Гитторфа по измерению числа переноса в электрохимии микроскопические кюветы, в которых наблюдается движение отдельных частиц с учётом движения дисперсионной среды в обратном направлении. Весьма остроумный, хотя и реже упоминаемый в литературе, метод Самнера и Генри заключается в наблюдении [c.452]


Смотреть страницы где упоминается термин Дебая дисперсионный: [c.113]    [c.123]    [c.57]    [c.155]    [c.103]    [c.266]    [c.289]   
Физическая химия поверхностей (1979) -- [ c.248 , c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Дебай

Дисперсионные



© 2025 chem21.info Реклама на сайте