Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические кинетика

    Б е 3 д е н е ж н ы X A.A. и др. Математическое описание кинетики процесса синтеза 3,4-дихлоранилина.— В сб. Каталитическое жидкофазное восстановление ароматических нитросоединений . Вып. 62. Л., Химия , 1969. [c.166]

    В интересном цикле работ С. Л. Кипермана с сотр. [103—106] проведено комплексное исследование кинетики и механизма гидрирования бензола и его ближайших гомологов с применением кинетических, изотопных, адсорбционных и расчетных методов. Исследование кинетики гидрирования толуола в области обратимости процесса показало, что скорость реакции проходит через температурный максимум и характеризуется температурным коэффициентом, меньшим единицы. При переходе от одного углеводорода к другому скорость гидрирования на М1-катализаторе изменяется в ряду бензол > этилбензол > толуол > л-ксилол л-кси-лол>мезитилен но закономерных изменений скоростей изотопного обмена как в ароматическом кольце, так и в алкильных заместителях не наблюдается. Полученные данные указывают, по мнению авторов [106], на различие механизмов реакций гидрирования и Э—Н-обмена. [c.56]


Рис. 2.4. Кинетика накопления свободных радикалов при окислении ароматической части, выделенной из-масляных фракций, выкипающих в интервале 325—350 °С (1), 350— Рис. 2.4. Кинетика накопления свободных радикалов при <a href="/info/48233">окислении ароматической</a> части, выделенной из-<a href="/info/483822">масляных фракций</a>, выкипающих в интервале 325—350 °С (1), 350—
    Сульфирование. Сульфирование ароматических соединений сильно тормозится небольшими количествами воды, присутствующей первоначально в реакционной смеси или образующейся в ней во время реакции [211]. Эта сильная зависимость от концентрации воды значительно усложняет изучение кинетики реакции в водных растворах серной кислоты. [c.451]

    Хиншелвуд [26, 112] с сотрудниками изучал кинетику сульфирования ароматических соединений с SO3, растворенным в нитробензоле. Они считают, что эта реакция первого порядка по отношению к ароматическим углеводородам и второго порядка по отношению к SO3 реакция тормозится в результате образования комплекса сульфокислоты с SO3. Второй порядок реакции относительно SOg допускает, что S Og является активным сульфирующим агентом. Эти выводы суммированы следующим образом  [c.528]

    КИНЕТИКА НИТРОВАНИЯ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ > [c.555]

    О кинетике образования жидких (главным образом, ароматических) углеводородов из метана известны лишь немногие данные. По некоторым сведениям, в ряде случаев образуется до 13% жидких углеводородов. [c.104]

Таблица 4.9. Кинетика распада индивидуальных гидропероксидов в ароматических растворителях Таблица 4.9. Кинетика распада индивидуальных <a href="/info/1648">гидропероксидов</a> в ароматических растворителях
    Быстрый обрыв цепей по реакции пероксидных радикалов с фенолами и ароматическими аминами, как уже отмечалось, связан с тем, что R02- —активные окислители, а InH — восстановители. Однако в окисляющихся углеводородах ингибиторы приходят в контакт и с другими окислителями, прежде всего с кислородом и гидропероксидами. Реакции ингибитора с этими окислителями могут отразиться на кинетике ингибированного окисления и длительности тормозящего действия ингибитора. [c.111]

    Слабые ингибиторы в прямогонных топливах не являются продуктами окисления сильных ингибиторов, как это наблюдается при окислении ароматических аминов и некоторых аминофенолов (см, с. 153), а присутствуют в топливе независимо. Сильные ингибиторы можно удалить из топлива адсорбцией на оксиде алюминия (или силикагеле) при этом слабые ингибиторы в топливе остаются. Для иллюстрации на рис, 5.18 (кривая 6) и на рис. 5.19 (кривая 4) показана кинетика инициированного окисления топлив ТС-1 и Т-1, очищенных [c.186]


Таблица 10. Кинетика гидрирования ароматических углеводородов на катализаторе N + 0 (144 °С, атмосферное давление) и относительная стабильность п-комплексов за, 40 Таблица 10. Кинетика <a href="/info/470902">гидрирования ароматических углеводородов</a> на катализаторе N + 0 (144 °С, <a href="/info/17581">атмосферное давление</a>) и относительная стабильность п-комплексов за, 40
    Еще сложнее кинетика гидрокрекинга ароматических углеводов родов Удовлетворительные результаты получаются при [c.319]

    Из рассмотренных примеров видно, что общим в кинетике окисления является тормозящее влияние продуктов окисления, адсорбирующихся на поверхности сильнее, чем исходные углеводороды. Для кислорода не наблюдается такого влияния, что подтверждает механизм хемосорбции углеводорода не на активных центрах, а на центрах, уже сорбировавших кислород. В то же время порядок реакции по кислороду и углеводороду может быть разным и зависящим от соотношения реагентов, окислительно-восстановительных свойств среды, а, значит, и от степени окисленности металла или оксида в приповерхностном слое. Энергия активации при гетерогенном окислении олефинов составляет 63—84 кДж/моль (15— 20 ккал/моль), а для ароматических соединений около 105 кДж/моль ( 25 ккал/моль). [c.415]

    На основании исследований с использованием физико-химических методов анализа сделан вывод, что кинетика реакции алкилирования ароматических углеводородов олефинами в присутствии сильных протонсодержащих кислот описывается уравнением обратимой бимолекулярной реакции, а схему образования комплексов в упрощенном виде можно- представить следующим образом  [c.68]

    Образование водородных связей существенно влияет на кинетику цепных реакций окисления углеводородов в жидкой фазе. Для термических реакций углеводородов и нефтепродуктов образование водородных связей значения, разумеется, не имеет. Влияние на кинетику термических реакций может оказывать образование я-комплексов радикалов с ароматическими углеводородами. Для некоторых радикалов найдено, что константа скорости реакции я-кои плекса радикала [c.117]

    На кинетику реакций гидрогенолиза сильное влияние оказы — ваю" тип и строение гетероорганических соединений, Скорость гидрогенолиза в общем возрастает в ряду тиофены<тиофаны< сульфиды<дисульфиды<меркаптаны. С увеличением числа ароматических и циклопарафиновых колец в молекуле сероорганического соединения его реакционная способность относительно гидрогено — лизй падает. Так, относительная скорость гидрогенолиза при идентичных условиях для тиофена, бензтиофена и дибензтиофена составляет соответственно 2,9 2,8 и 1,0. [c.207]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]

    Обзор реакций озонирования будет неполным без рассмотрения важных исследований Уибо и его школы ио кинетике озонирования ароматических углеводородов [20, 21]. Озонирование ароматических углеводородов должно протекать подобно озонированию алифатической двойной связи. Но так как в ароматическом кольце нет двойных связей, то некоторые голландские исследователи [9, 10] предположили, что под влиянием поляризованной молекулы озона происходит такое распределение эт-электронов в ароматическом ядре, когда одна пара перемещается к тому углероднод1у атому, который подвергается атаке молекулой озона, а остальные я-электроны распределяются на остальных пяти углеродных атомах углерода, занимая самое низкое энергетическое положение. На основе кинетических изменений, Уибо и другие [1, 18, 23] сообщили, что триозонид бензола образуется в результате трех биомолекулярных реакций, первая из которых протекает значительно медленнее, чем последующие две, и поэтому общая скорость реакции определяется скоростью первой реакции. Константа скорости для бензола нри температуре—30° С была определена в 5 X 10 (миллимоль /мин. ). Механизм реакциимо-жет быть изображен следующим образом  [c.353]

    К сожалению, несмотря на огромное количество затраченного труда на изучение реакции алкилирования ароматических углеводородов, имеется сравнительно немного кинетических данных по этой реакции. Кроме того, имеющиеся данные получены главным образом с применением ароматических углеводородов в качестве растворителя, поэтому очень мало можно сказать о порядке реакции по отношению к ароматическому углеводороду [245]. Имеется одна недавняя работа по кинетике реакции, катализируемой хлористым алюминием, между 3,4-дихлорбензилхлори-дом и /i-питрохлорбензилхлоридом и производными бензола в растворе нитробензола [47]. [c.439]


    Раствор азотной кислоты в сорной является столь энергичным нитрующим агентом, что изучать кинетику нитрования этим реагентом можно только прил10няя ароматические соединения низкой активности. [c.449]

    Нитрование водными растворами азотной кислоты или азотной кислотой, растворенной в органических растворителях, создает значительно более мягкие условия реакции и позволяет изучать кинетику в значительно более широкой области активностей ароматических соединений. Так, нанример, прп нитровании в уксусной кислоте таких сравнительно реакционноспособных ароматических соединений, как бензол, толуол, п-кси-лол или мезитилен, было замечено, что скорость нитрования их но зависит ни от концентрации, нп от природы ароматического соединения. С другой стороны, для менее реакционноспособных веш,еств, как хлорбензол, этиловый эфир бензойной кислоты, существует зависимость скорости реакции как от концентрации, так и от структуры ароматичо ого соединения [22, 156]. [c.450]

    Д п-альпое изучение бензоилированпя беизола проведено Оливером [244]. Исследовались следующие реакции хлористый бензоил и хлористый алюминий с бензолом в качестве растворителя бромистый бензоил и бромистый алюминий с бензолом в качестве растворителя реакция бромистого бензоила и бромистого алюминия с бензолом в сероуглероде в качестве растворителя. В тех случаях, когда ароматический углеподород присутствует в качестве растворителя, кинетика реакции следует первому порядку и константы скорости примерно пропорциональны концентрации катализатора, если последний взят без избытка [ВС0С1] >-[А1Хд]. При избытке катализатора константы скорости быстро возрастут. Последняя система показывает, что в этом случае реакция является реакцией первого порядка и по ароматическому углеводороду, и по хлориду, и катализатору. [c.454]

    Такое промежуточное соединение должно было бы нметь сравнительно малый стерический эффект в отношении о-замещения. Это находится в соответствии с образованием 34,7% о-изомера при хлорметилировании то-лз ола [54]. Подобным же образом высокая степень резонансной стабилизации, которая, как предполагается, существует в этом промежуточном соединении, наводит на мысль, что реакция должна идти с сильной избирательностью. Отношение скоростей реакций толуол бензол, равное 112, подтверждает эго заключение [54]. Большая избирательность заставляет отбросить сомнения относительно предыдущих исследований кинетики некаталитического хлорметилирования ряда ароматических углеводородов в уксусной кислоте. [c.458]

    При изучении кинетики нитрования нитробензола в серйой кислоте Мартинсен нашел зависимость константы скорости от начальной концентрации серной кислоты. С увеличением концентрации серной кислоты от 80 до 90% константа скорости второго порядка увеличивается приблизительно в 3000 раз. При более высоких концентрациях серной кислоты константа скорости падает, составляя 25 % от максимальной скорости при концентрации серной кислоты 100%. Такое же явление наблюдалось при нитровании других ароматических соединений. Положение максимума константы скорости реакции для различных ароматических соединений мало меняется с изменением температуры. [c.559]

    Большое внимание было уделено кинетике гетерогенного гидрирования, в частности углеводородов с кратными связями — алкенов, алкинов и ароматических, что важно для технологии некоторых процессов (гидроформинга, гидроочистки, процессов, проводимых по реакции Фишера — Тропша). [c.240]

    Изучение кинетики гидрирования ароматических углеводородов очень важно как с теоретической, так п с практической точек зрения (производство циклогексана из бензола, тетралина и декалина из нафталина и т. д.). В сходных условиях скорость гидрирования углеводородов различных рядов уменьшается в следующем порядке алкены > циклоалкены > нафталин > бензол > алкилбензолы > > арилбензолы. [c.241]

    Ароматические углеводороды в промышленных условиях нитруют азотной кислотой (или смесью HNO3 и H2SO4) в жидкой фазе кинетика этих процессов изучена достаточно полно. Было установлено, что скорость нитрования азотной кислотой не зависит от концентрации ароматического углеводорода (реакция нулевого порядка), в тех же условиях скорость нитрования ароматических соединений с пониженной реакционной способностью (например, галоидных производных) зависит от концентрации и природы ароматического соединения. [c.299]

    Кинетика взаимодействия алканов с SOj в присутствии кислорода и промоторов (с промежуточным образованием надсульфоновых кислот) или в присутствии кислорода, промоторов и воды изучена недостаточно. Более подробно изучена кинетика сульфирования ароматических соединений. [c.320]

    В Секторе нефтехимии проводились работы по уточнению ресурсов нефтехимического сырья на Украине, в частности по оценке содержания нормальных алканов и ароматических углеводородов в различных фракциях нефтей Украины, изучались теоретические основы карбамидной депарафинизации. В соавторстве с П. Н. 1 аличем, Л. А. Куприяновой, К. И. Патриляком и другими исследованы процесс клатратообразования, взаимодействие индивидуальных нормальных алканов С —С12 с карбамидом в широком диапазоне температур в разных средах, равновесие в системах карбамид — алкан — комплекс, термохимия ] оА[1глексов карбамида и кинетика процессов их образования и разложения. Открыто явление низкотемпературного гистерезиса, связанного с механизмом образования и разложения комплексов и термодинамическими характеристиками процессов перекристаллизации мочевины и адсорбции — десорбции включенного вещества. [c.13]

    Таким образом, современные представления о механизме и кинетике гидрирования бензола, хотя и имеют определевные противоречия и неясности, приводят к ряду общепринятых основных выводов. К ним относятся обязательность геометрического соответствие структуры металла и ароматического соединения при плоскостной адсорбции, невозможность или трудность образования промежуточных продуктов, определение скорости процесса большею частью парциальным давлением водорода и, наконец, представление об образовании я-комплексов ароматического соединения с переходными металлами причем присоединение первого атома водорода является лимитирующей стадией процесса в целом. Все эти выводы сделаны в отношении гетерогенных катализаторов. [c.137]

    Кинетика этих реакций при кислотном катализе удовлетворяет VJ авнению г=/ганЧ-[АгН] [R HO], показывающему, что самой медленной стадией является взаимодействие молекулы альдегида, аь.тивпрованной протоном, с ароматическим соединением. [c.550]

    Метилзамещенные бензолы ингибируют цепной процесс в результате обрыва цепей при образовании радикалов беизильного типа. Для фракций 200—250 и 250—300 °С более существенно влияние на кинетику пиролиза алкилароматических углеводородов, содержащих слабые связи С—С, сопряженные с кольцом скорость пиролиза резко возрастает, что объясняется ускорение(М инициирования цепей. Для фракции 300—350 °С снова более существенно тормозящее пиролиз влияние ароматических углеводородов. С утяжелением фракционного состава сырья выход метана снижается, а выход этана практически неизменен. Выход этилена, наибольший для фракции 30—60 "С, резко снижается при пиролизе фракции 60—85 °С, содержащей непиролизуемый бензол и дающий малый выход этилена циклогексан. Далее он медленно снижается в соответствии с увеличением содержания во фракциях ароматических углеводородов, а для фракций 250—300 и 300—350 °С снова резко снижается в результате значительного содержания в них конденсированных циклопарафинов и гибридных углеводородов, содержащих конденсированные ароматические и циклопарафиновые кольца. Выход жидких углеводородов и пироуглерода с утяжелением фракционного состава сырья возрастает. [c.105]

    Исключение составляет фракция 250—300 °С, для которой выход жидких продуктов ниже, чем для фракции 200 250 Х. Для деароматизованных фракций до 250 °С время достижения максимального выхода этилена одинаково, что является результатом устранения ингибирующего и инициирующего влияния ароматических углеводородов. Кинетика пиролиза деароматизованных фракций 250—300 и 300—350 °С, по-видимому, определяется особенностями строения конденсированных циклопарафинов. Выход этилена для деароматизованных фракций до 250°С на 10—15% отн. выше, чем для нативных, а для фракций 250—300 и 300—350 °С деароматизация повышает выход этилена примерно на 25% отн. [c.105]

    Кинетика реакций гидрокрекинга. Кинетика реакций, проходящих при гидрокрекинге, изучена очень мало. Энергия активации гидрирования ароматических углеводородов на различных катализаторах имеет один порядок — около 42 кДж/моль (10 ккал/моль). Для кажущейся энергии активации бензинообразования при гидрокрекинге вакуумного газойля — величине в общем фиктивной — в литературе приведены значения порядка 125—210 кДж/моль (30—50 ккал/моль). Некоторое представление о соотношении скоростей различных реакций гидрокрекинга легкого газойля каталитического крекинга на катализаторе с высокой кислотной активностью при 10,5 МПа (105 кгс/см ) дает следующая схема (цифры на стрелках — значения относительной константы скорости)  [c.297]


Смотреть страницы где упоминается термин Ароматические кинетика: [c.42]    [c.43]    [c.368]    [c.452]    [c.563]    [c.321]    [c.159]    [c.142]    [c.152]    [c.336]    [c.63]    [c.116]   
Органическая химия. Т.2 (1970) -- [ c.132 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.126 , c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте