Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение двойной слой

    Теория электрохимического перенапряжения относилась первоначально к тому случаю, когда можно было пренебречь тонкой структурой двойного слоя и не учитывать распределения потенциала между его плотной и диффузной частями. Это допущение оправдывается (с наибольшей полнотой — в области малых перенапряжений), если выполнены следующие условия. [c.347]


    В то же время изменение энергии адсорбированного иона при поляризации зависит, очевидно, не от общего скачка потенциала ф между электродом и раствором, а от величины ф — 4 1. Таким образом, зависимость энергии активации процесса разряда от потенциала и перенапряжения, с учетом строения двойного слоя, выражается уравнением [c.628]

    Если при протекании анодного процесса выход иоиов металла в раствор не поспевает за отводом электронов, отрицательный )аряд на металлической обкладке двойного слоя уменьшится, а потенциал металла сдвинется в положительную сторону. Этот вид анодной поляризации принято называть перенапряжением ионизации металла. [c.34]

    Однако то, что именно замедленная стадия перехода электрона характеризуется экспоненциальной зависимостью тока от перенапряжения, было показано теоретически значительно позднее Батлером (1924 г.), Фольмером и Эрдей-Грузом (1930 г.). Появление экспоненциальной зависимости можно представить себе следующим образом. При протекании реакции с замедленным переходом электрона электрический заряд должен преодолеть разность потенциалов между электродом и раствором, на что необходимо затратить определенную энергию. В соответствии с законами химической кинетики такая энергия необходима для достижения переходного состояния (энергия активации). Для электрохимической реакции переходное состояние локализуется в плотной части двойного слоя. Поскольку плотная часть двойного слоя ограничена поверхностью металла и плоскостью, отстоящей от нее на расстояние радиуса иона, то в одной области плотной части двойного слоя потенциал ускоряет прямую реакцию, а в другой — замедляет обратную реакцию (рис. Б.39). [c.339]

    Изменение тока во времени в двухимпульсном гальваностатическом методе показано на рис. 83, а. Первый импульс /х длительностью 1 (порядка нескольких микросекунд) служит для заряжения двойного слоя до потенциала, соответствующего току второго импульса 2. Если высота первого импульса подобрана правильно, то регистрируемая кривая Т1 — 1 при /= 1 должна удовлетворять условию ( 1 / ),,=0 (см. сплошную кривую на рис. 83, б). Если же высота первого импульса подобрана неправильно, то при или dr[ldtQ (величина 1 занижена). Соответствующие Т1, кривые показаны на рис. 83, б пунктирными линиями. После подбора правильной высоты первого импульса х регистрируют перенапряжение т1о соответствующее = 1, и повторяют операцию при другой длительности первого импульса. В результате получают экспериментальную зависимость т)о от 1. Эта зависимость должна удовлетворять уравнению [c.195]


    Время, в течение которого емкость двойного слоя электрода заряжается током I до перенапряжения г), названо константой времени емкости двойного слоя  [c.70]

    Определить значение перенапряжения, отвечающее плотности тока 0,01 А-см- для катодного и анодного процессов, если лимитирующей является стадия разряда-ионизации и ток обмена равен 1 мА-см- . Влияние строения двойного слоя не учитывать. [c.119]

    Уравнение (Х1,57) проверялось С. Д. Левиной и В. А. Зарин-ским, а также В. С. Багоцким, который определял изменение перенапряжения при добавлении к раствору НС1 соли КС1 и сравнивал полученные значения с рассчитанными по уравнению (XI,57) или (Х1,54). Значения ipi при этом вычислялись по уравнению диффузного двойного слоя  [c.320]

    Наоборот, при наличии в двойном слое многозарядных катионов лантана перенапряжение на ртути повышается. Эти эффекты могут быть объяснены адсорбцией анионов и катионов и из- [c.320]

    Теория замедленного разряда ионов в последнее время получила широкое признание. По этой теории наиболее медленной стадией сложного электрохимического процесса является процесс разряда ионов. Теория замедленного разряда, предложенная Фольмером, не учитывала строения границы электрод—раствор, поэтому не могла объяснить влияния состава электролита на величину водородного перенапряжения. Это направление получило развитие в работах А. Н. Фрумкина, который показал, что, с одной стороны, силы электростатического взаимодействия между электродом и ионами вызывают изменение концентрации реагирующих веществ в зоне реакции, а с другой — наличие двойного слоя сказывается на величине энергии активации электродного процесса. [c.357]

    VII—12). Однако, как правило, это сопровождается поляризационными эффектами в двойных слоях у поверхности частиц (возникновение перенапряжений), и в результате такие частицы, особенно если они имеют достаточно малые размеры, могут вести себя как неэлектропроводные. [c.192]

    Анализ опытных данных позволяет сделать заключение, что для разных систем величины а и Ь меняются в широких пределах коэффициент а уменьшается с увеличением концентрации осаждаемого вещества и повышением температуры. Чем меньше концентрация осаждаемого вещества, тем меньше скорость роста возникших кристаллов, тем меньше они потребляют тока, вследствие чего большая его доля тратится на перестройку двойного слоя, проявляющуюся в увеличении перенапряжения. [c.241]

    Теория Штерна объяснила влияние концентрации и природы ионов на строение двойного слоя. Она оказалась полезной при выяснении ряда фактов из области электрокапиллярных и электрокинетических явлений и была использована А. Н. Фрумкиным при истолковании теории перенапряжения водорода, [c.229]

    Если причина водородного перенапряжения заключается в замедленной стадии молизации, то металлы, поглощающие водород (Р1, Рс1, Ре, N1, Со, Та и др.), должны обладать наименьшим перенапряжением. Это справедливо, если сопоставить металлы железной группы, легко поглощающие водород, со ртутью или цинком, на которых перенапряжение значительно выше. Однако это не оправдывается для тантала. Тантал поглощает водород в значительно больших количествах, чем металлы железной группы, в то же время перенапряжение для разряда ионов водорода на нем очень велико. Экспериментальные данные показывают, что Т)Н2 зависит от pH раствора, присутствия посторонних ионов, диффузности двойного слоя, содержания в электролите поверхностно активных веществ. Все эти факторы изменяют величину константы а. Однако рекомбинационная теория не объясняет этих явлений. [c.349]

    Перенапряжение процесса ионизации металлов часто снижается в результате образования поверхностных комплексов с анионами электролита, причем образующийся комплекс гидратирован. Подобную активацию можно объяснить на основании теории двойного слоя при учете ф -потенциала. Гидратированный поверхностный комплекс металла с галоидом легко теряет связь с основной массой металла и переходит в раствор. Этим объясняется, например, то, что скорость анодного растворения платины при постоянном потенциале пропорциональна концентрации ионов хлора в электролите. [c.447]

    С меньщей уверенностью можно сделать заключение о природе процесса на других металлах второй электрохимической группы — свинце, цинке, кадмии и таллии. Больщинство экспериментальных данных свидетельствует о замедленном протекании разряда с последующей электрохимической десорбцией атомов водорода. Заметное повышение перенапряжения Еюдорода при переходе от положительно заряженной поверхности к поверхности, заряженной отрицательно, наблюдается на свинце, кадмии и таллии и связано с перестройкой двойного слоя, приводящей к десорбции анионов и прекращению их активирующего действия на разряд положительно заряженных гидроксониевых ионов Н3О+ (см. рис. 19.1). Если -бы скорость выделения водорода определялась не разрядом, а другой стадией, например рекомбинацией, то изменение структуры двойного слоя не могло бы вызвать такого изменения водородного перенапряжения. [c.414]


    Л. Н. Фрумкин и сотр. показали, что перенапряжение перехода определяется строением двойного электрического слоя на границе раствор — металл. Можно полагать, что электрохимическая реакция протекает только при непосредственном соприкосновении реагирующих частиц с электродом, так как переход электронов на значительное расстояние маловероятен. С этой точки зрения следует считать ре-акционноспособными частицы, расположенные только в плотной части двойного электрического слоя (см. 174). Поэтому при расчете перенапряжения следует учитывать не электродный потенциалу и концентрацию реагирующих веществ в массе электролита, а падение потенциала и концентрацию реагирующих ионов в плотной части двойного слоя. Тогда в уравнение (184.17) входит дополнительный член, содержащий фгпотенциал  [c.508]

    На электродах 1 и 2 возникают поляризационные сопротивления и 2, отличающиеся от омического сопротивления, поскольку зависят от потенциала и включают в себя сопротивления, соответствующие всем видам перенапряжений. Кроме того, электроды можно представить (исходя из теории электрохимического двойного слоя) как конденсаторы с емкостью Сг и Сг. Поверхности Р этих конденсаторов равны поверхностям электродов, расстояние между пластинами конденсаторов й составляет 10 см (порядка диаметров молекул). Параллельно конденсаторам С и Сг включены сопротивления и Яя. Рис. Д.90. Эквивалентная схема из- Эти системы разделены рас-иерительной ячейки для электрохи- твором электролита с ОМИче-мических методов анализа. [c.278]

    При определении производной (И/йг на основе уравнений (48.1) и (48.2) необходимо учитывать зависимость величин о. й н и г от потенциала. Однако если адсорбция реагирующего вещества изменяет емкость двойного слоя (см. 12), а следовательно, зависит от потенциала электрода, то разделение импеданса двойного слоя и импеданса электрохимической реакции оказывается невозможным. Если предположить, что величины о и не зависят от потенциала (в простейшем случае о=ё к=0) и концентрация поверхностно-неактивного фонового электролита настолько велика, что можно пренебречь зависимостью г гпотенциала от т), то ток обмена не будет зависеть от перенапряжения и дифференцирование уравнения (48.1) по г) в области обычного разряда (а=сопз1) дает [c.243]

    Кулоностатический метод. Принцип этого метода состоит в том, что заряд электрода, который до этого находился при равновесном потенциале, резко изменяется на определенную величину А . Инжек-ция в электрохимическую систему заряда Ад достигается соединением электрода с эталонным конденсатором, предварительно заряженным до определенной разности потенциалов. В результате этого потенциал электрода резко смещается относительно на величину -г о=Ад С, где С — емкость двойного слоя. Затем по мере протекания электрохимической реакции потенциал постепенно возвращается к своему равновесному значению. Теория кулоностатического метода показывает, что в интервале времени 10 с 10 зависимость перенапряжения от времени описывается уравнением [c.195]

    ВЛИЯНИЕ СТРУКТУРЫ ДВОЙНОГО слоя и ПРИРОДЫ МЕТАЛЛА НА ПЕРЕНАПРЯЖЕНИЕ ВЫДЕЛЕНИЯ ВОДОРОДА И ЭЛЕКГРОВОССТАНОВЛЕНИЕ АНИОНОВ [c.196]

    VIII.7. Влияние структуры двойного слоя и природы металла на перенапряжение выделения водорода и электровосстановление анионов [c.233]

    Если при заданной плотности тока соблюдается условие е — < О, то поверхность металла приобретает отрицательный заряд. В обкладке двойного слоя будут накапливаться катионы, не разряжающиеся на катоде (например, катионы Ка+ в растворе для никелирования). Наличие катионов в обкладке двойного слоя должно препятствовать разряду ионов металла соответственно перенапряжение разряда никеля будет больше. Естественно, что при этом увеличение концентрации посторонних катионов в электролите и повышение его кислотности должно вызывать увеличение перенапряжения. Если для этого же раствора е — > О, то поверхность электрода заряжена положительно и в обкладке двойного слоя будут накапливаться неразряжающиеся на катоде анионы. Это должно облегчить разряд катионов, снизить перенапряжение их разряда, что и наблюдается в опыте. При потенциалах, близких к потенциалу нулевого заряда (е отмечается максимальная адсорб- [c.358]

    Переходное время электродной реакции 5-10- с. Можно ли изучать кинетику реакции методом хроноцо-тенциометрии при плотности тока 5 А-дм , если перенапряжение при этой плотности тока равно 200 мВ Емкость двойного слоя принять равной 20 мкФ-см . [c.119]

    С). Таким образом, характерной особенностью процесса выделения водорода является его сильная зависимость от pH электролита. Перенапряжение вообще зависит от состава и раствора и присутствия в растворе посторонних ионов, влияющих на величину электрокинетического потенциала и строение двойного слоя. Это явление было изучено С. Д. Левиной и В. А. Зарин-ским, которые нашли, что добавление к раствору НС1 соли La la, дающей поверхностно активные поливалентные катионы La, повышает перенапряжение на ртути. Аналогичные закономерности наблюдаются и на других металлах, например на никеле. [c.301]

    У металлов с высоким перенапряжением (свинец, кадмий, ртуть) влияния анодного процесса не наблюдается, но для них трудно получить начальный участок тафелевской кри)зой, так как необходимая для этого Пототность тока слишком мала и большая доля электричества расходуется не на электрохимический процесс, а на зарядку двойного слоя (нефарадеевский ток). [c.187]

    При образовании на электродах газообразных продуктов возникает перенапряжение, вызванное образованием новой фазы —пузырьков газа. Это перенапряжение относительно невелико (порядка 70—100 мВ), но в ряде случаев именно газообразование может оказаться стадией, лимитирующей суммарный электродный процесс (например, при образовании пузырьков водорода на платинированной платине или палладиевой черни). А. И. Фрумкин еще в 1933 г. сделал вывод о зависимости скорости разряда — ионизации газообразных продуктов — от строения двойного электрического слоя. Согласно уравнениям теории замедленного разряда, эта скорость обусловлена 1) влиянием фгпотенциа-ла на концентрацию реагирующих ионов в двойном слое и 2) влиянием згпотенциала на энергию активации электродного процесса. [c.209]

    Зависимость перенапряжения от времени представлена на рис. 83. На участке АБ изменение прямо пропорционально времени и, следовательно, количеству протекшего через катод электричества. Это можно объяснить тем, что большая часть пропускаемого в первые мгновения тока расходуется на заряжание двойного слоя и лищь незначительная часть его идет на выделение водорода. [c.336]

    Для борьбы с коррозией на гетерогенных смешанных электродах, особенно при внутренней коррозии резервуаров и сосудов сложной формы, как и вообще при применении электрохимической защиты, представляет интерес распределение тока. На основании законов электростатики можно определить первичное распределение тока путем интегрирования уравнения Лапласа (div grad ф=0) [8, 12]. При этом сопротивления поляризации у электродов не принимаются во внимание. Распределение тока обусловливается исключительно геометрическими факторами. При учете сопротивлений поляризации следует проводить различие между вторичным и третичным распределением тока, когда действуют только перенапряжения перехода, обусловленные прохождением иона через двойной слой, или перенапряжения перехода в сумме с концентрационными. Это может представлять интерес, например, в гальванотехнике для получения равномерного осаждаемого слоя металла [13]. Под влиянием сопротивлений поляризации распределение тока становится более равномерным, чем первичное [2, 8, 12, 13], Для оценки условий подобия вводится параметр поляризации [c.60]

    Скорость электрохимического выделения водорода зависит от строения двойного слоя, на границе металл—раствор. Поэтому наличие веществ, способных адсорбироваться иа поверхности электрода, оказывает существенное влияние на условия разряда ионов водорода. Водородное перенапряжение в кислых растворах уменьшается при адсорбции анионов, адсорбция катионов приводит к увеличению перенапряжения. Такой результат был установлен для кадмия, при катодной поляризации которого в растворе серной кислоты потенциал проходит точку нулевого заряда. Этот переход сопровождается скачкообразным увеличением перенапряженияг которое можно было объяснить десорбцией анионов и началом адсорбции катионов. [c.70]

    Согласно А. И. Фрумкину, точная теория водородного перенапряжения должна исходить из реальной структуры двойного слоя на границе электрод—раствор. Учет этой структуры предполагает, лрежде всего, установление различия между полным падением потенциала на межфазной границе и той его величиной, какая приходится на гельмгольцев-скую часть двойного слоя. Как это следует из рис. 4, падение потенциала в плотной гельмгольцевской части двойного слоя равпо фг=ф— 31. Поскольку Н-ионы вступают в электрохимическую реакцию, будучи. на расстоянии ионного радиуса от поверхности электрода, изменение энергии активации этого процесса определяется не полным падением потенциала, т. е. величиной фр, а значением, равным (ф— 1з1) Р. В соответствии с этим, для энергии активации разряда справедливым станет выражение [c.77]


Смотреть страницы где упоминается термин Перенапряжение двойной слой: [c.353]    [c.375]    [c.428]    [c.471]    [c.71]    [c.508]    [c.17]    [c.243]    [c.319]    [c.321]    [c.365]    [c.83]    [c.343]    [c.345]    [c.351]   
Методы измерения в электрохимии Том1 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние структуры двойного слоя и природы металла на перенапряжение выделения водорода и электровосстановление анионов

Двойной электрический, слои. Адсорбция на границе металл—раствор Общие вопросы электрохимической кинетики и теория водородного перенапряжения

Перенапряжение

Перенапряжение водорода и строение двойного слоя

Теория электрохимического перенапряжения, учитывающая структуру двойного слоя



© 2024 chem21.info Реклама на сайте