Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон параболический закон диффузи

    Параболический закон роста окисной пленки, установленный впервые Тамманом на примере взаимодействия серебра с парами йода, наблюдали в опытах по окислению на воздухе и в кислороде меди и никеля (при I > 500° С), железа (при I > 700° С) и большого числа других металлов и сплавов при определенных температурах, В табл. 6 приведены параметры диффузии элементов в окислах. [c.59]


    Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме [7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах [c.193]

    Судя по количеству водорода, накапливающегося в котлах в зависимости от времени, а также по данным лабораторных измерений скорости коррозии, скорость роста оксида подчиняется параболическому закону 123], а следовательно, контролируется диффузией. Механизм этого процесса, как это описано в гл. 10, связан с миграцией ионов и электронов через слой твердых продуктов реакции. [c.283]

    Физико-химические процессы, происходящие вблизи поверхности при химико-термической обработке, заключаются в образовании диффундирующего вещества в атомарном состоянии вследствие химических реакций в насыщенной среде или на границе раздела среды с поверхностью металла (при насыщении из газовой или жидкой фазы), сублимации диффундирующего элемента (насыщение из паровой фазы), последующей сорбции атомов элемента поверхностью металла и их диффузии в поверхностные слои металла. Концентрация диффундирующего вещества на поверхности металла возрастает с повышением температуры (по экспоненциальному закону) и с увеличением продолжительности процесса (по параболическому закону). Диффузионный слой, образующийся при химикотермической обработке деталей, изменяя i тpyктypнo-энepгeтичe кoe состояние поверхности, оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объемные свойства деталей. Химико-термическая обработка позволяет придать изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т. д. [c.42]


    Уравнение (IV, 15) называется параболическим законом диффузии. Из (IV, 15) следует, что [c.117]

    Для подтверждения внутренне-внешнедиффузионного происхождения сложно-параболического закона следует исследовать температурную зависимость скорости окисления металла, а следовательно, и постоянных к и и определить значения соответствующих энергий активации и Q< ,, которые должны быть более низкими (порядка нескольких килокалорий на моль) для внешней и более высокими (порядка десятков и сотен килокалорий на грамм-атом) для внутренней диффузии и могут быть сопоставлены с соответствующими литературными данными. [c.66]

    Механизм данного явления, вероятно, заключается в диффузии кислорода внутрь сплава и реакции его с легирующими компонентами, обладающими большим сродством к кислороду, чем основной металл, прежде чем эти компоненты смогут мигрировать к поверхности сплава. При концентрациях легирующего компонента выше критической на поверхности идет образование плотного защитного слоя, состоящего из оксида этого компонента, который препятствует внутреннему окислению. Рост толщины внутреннего слоя окалины подчиняется параболическому закону, так как процесс контролируется диффузией кислорода сквозь наружную пленку. Более подробно это явление рассмотрено Реппом [48]. [c.203]

    Часто рост пленки протекает медленнее, чем это следует из параболического закона. Затухание процесса коррозии в таких случаях объясняют либо уплотнением пленок, либо появлением дефектов в виде пузырей или расслоений, что тормозит диффузию. В этих случаях рост пленки протекает в соответствии с логарифмическим законом [c.19]

    Вычисления показывают, что закон роста пленки окисла на сплавах, вообще говоря, может сильно отличаться от параболического закона кх, который получается в предположении независимости коэффициентов диффузии от состава окисла и экспериментально подтверждается при высокотемпературном окислении чистых металлов. Это проявилось бы еще более резко при рассмотрении общей задачи, где а ф О ч Ь ф 0. [c.96]

    При больших толщинах слоев (Аф мало) рост пленки происходит по параболическому закону, который легко получить, применяя к процессу диффузии ионов через окисный слой закон Фика. [c.383]

    При больших температурах четко выявляется параболический закон роста, т. е. затухание диффузии с ростом толщины слоя. В этом случае лимитирующим процессом является уже диффузия, но не скорость химической реакции, а условия диффузии можно определить соотношением [c.509]

    Уравнение второго закона диффузии Фика, представленное в виде (1.12), является параболическим дифференциальным уравнением [19], описывающим процессы диффузии. При решении дифференциальных уравнений в частных производных необходимо установить определенные для решаемой задачи граничные условия. [c.44]

    Параболический закон описывает процесс роста, лимитируемый диффузией через пленку, прочно связанную С поверхностью. Отклонения от линейного и параболического законов роста могут быть следствием побочных явлений, таких, как повторяющиеся процессы растрескивания и залечивания пленок. [c.475]

    Проведенные исследования позволяют сделать некоторые предположения относительно механизма реакции. Параболический закон графитизации предполагает наличие диффузионных стадий процесса. Вероятно, в первую очередь графитизируются поверхностные дефектные и изолированные атомы углерода, они группируются в ароматические кольца, причем последние их связи с находящимся под ними слоем атомов разрываются. Благодаря диффузии ароматических колец в поверхностных слоях и их сращиванию, возникает черный графитоподобный углерод. [c.112]

    Параболическому закону диффузии подчиняется кинетика процессов диффузии, сопровон<дающейся необратимой химической реакцией, как, например, образование окалины в сталях, газовая коррозия металлов, образование осадков в студнях и т. д. Видимой границей зоны реакции в таких процессах является граница образования новой фазы — фазы продукта реакции, как, например, граница окисла металла при образовании окалины, граница осадка при реакции осаждения в студнях и т. п. Эта граница находится на расстоянии X от места начала диффузии и перемещается во времени но параболическому закону. Расстояние X соответствует достижению ко времени I диффундирующим веществом (кислород, диффундирующий в металл металл, диффундирующий в окисел металла соль, образующая осадок с веществом, растворенным в студне, диффундирующая в студень и т. д.) концентрации, отвечающей стехиомет-рическому составу продуктов реакции, т. е. стехиометрически эквивалентной концентрации другого реагирующего вещества. Физически это означает, что при течении процессов нарастания слоя твердых продуктов реакции на исходном твердом теле (например, окалинообразование, процессы выщелачивания и т. п.) диффундирующий извне компонент потребляется в зоне реакции (граница раздела исходная фаза — слой продуктов) и не пересекает ее потому, что его концентрация за зоной реакции практически равна нулю. [c.118]


    Параболический закон окисления (7) в самом общем виде предполагает высокие температуры, идеальные условия равновесия, отсутствие объемных зарядов и, следовательно, гомогенную стационарную диффузию. Этот закон, согласно теории Вагнера, соблюдается только после достижения определенной толщины слоя оксида. На более ранних стадиях образования слоя оксида наблюдается отклонение от параболического-закона [46]. [c.42]

    Гидрид урана синтезируют [1—4] прямым взаимодействием урана с газообразным водородом в установке Сивертса при давлении водорода 1 атм. Для получения используют тщательно очищенные от поверхностных окислов кусочки урана размером 3—5 см . Реакция протекает количественно до UHa выше 200° С (до 250° С). При этих температурах скорость реакции пропорциональна давлению и подчиняется линейному закону. При температуре выше 250° С скорость реакции подчиняется параболическому закону и контролируется диффузией. Выше 500° С начинает преобладать обратный процесс процесс гидрирования проводят чаще всего при 350° С и времени выдержки 2 ч. Полученный гидрид ( -UHa) охлаждают до комнатной температуры в установке и затем извлекают. Хранят гидрид урана в атмосфере инертного газа, так как он легко вступает во взаимодействие с воздухом. [c.79]

    Линейный ход этих зависимостей свидетельствует о применимости для описания кинетики твердофазовых реакций уравнения Яндера. Согласно мнению большинства исследователей уравнение Яндера удовлетворительно описывает процесс лишь при малых степенях превращения 0 = 0,2,..., 0,4. Это является, по-видимому, следствием формального перенесения закономерностей, описывающих твердофазовые реакции в плоских слоях (параболический закон роста слоя продукта) на случай сферической диффузии. [c.309]

    В работе [74] предпринята попытка объяснить влияние механической деформации медного электрода на его анодную и катодную поляризацию в водном растворе Си304 с позиций теории перенапряжения кристаллизации при условии, что лимитирующей стадией реакций является поверхностная диффузия ад-ионов, параметры которой зависят от расстояния между ступеньками роста, т. е. от плотности дислокаций. С учетом того, что плотность дислокаций линейно связана со степенью пластической деформации, получена прямая пропорциональная зависимость скорости реакции от корня квадратного из степени деформации. Эта зависимость приближенно соответствует результатам опытов и несколько нарушается при больших деформациях. К сожалению, в этой работе не измеряли величину механического напряжения, а поскольку в случае меди деформационное упрочнение может подчиняться параболическому закону [41 ], можно объяснить результаты опытов [74 ] без привлечения теории замедленной стадии поверхностной диффузии.  [c.89]

    Последнее уравнение имеет тот же вид, что и уравнения диф-фузионной кинетики, но с другим численным значением п. Если диффузия протекает в бесконечный или полубесконечный столб вещества и сопровождается необратимой химической реакцией, то, как было показано (см. 24, формулу IV, 15), количество прореагировавшего вещества растет по параболическому закону [c.124]

    Исходя из статистических исследований такой модели, де Ионг и Сафман вывели зависимости для определения коэффициентов продольной и радиальной диффузии. Авторы исходили из предположения, что все каналы имеют некоторую длину м, и что скорость жидкости в каждом канале одинакова или изменяется по параболическому закону. Предполагается также, что скорость потока зависит от угла, образуемого осью канала и направлением потока. Уравнения, полученные этими авторами, кроме скорости течения и диаметра зерна катализатора, учитывают молекулярную диффузию и величину пути, пройденного жидкостью в слое. Коэффициент диффузии для газов и жидкостей различен и возрастает с ростом длины реактора. [c.41]

    Кунин и Майерс показали, что поглощение кислот анионообмен-ными смолами определяется диффузией в частицах геля, за исключением тех случаев, когда смолы представляют собой пористые системы. Эти исследователи для ранних стадий процесса поглощения нашли согласие с параболическим законом диффузии, что указывает на определяющую роль диффузии в соответствии с взглядами Бойда и его сотрудников [10]. При больших концентрациях и при больших величинах поглощения этот иростой закон уже не выполняется. Экспериментальные данные обещают быть очень обширными, и их анализ на основании теоретических положений Бойда расширит наши сведения о скоростях обмена анионов. [c.81]

    Дривнайкс исследовал константы скорости окисления при параболическом законе для различных металлов при 0,6 Tf , где —температура плавления в абсолютной шкале. Грубые значения, кажется, имеют малое отношение к другим свойствам металлов, но он пытается вычислить некоторые сниженные скорости диффузии. Автор представляет себе объем одного моля окисла в виде куба, помещенного на поверхности металла, так что N металлических ионов могут двигаться по Л/ - путям, каждый длиной иона. Он вычисляет скорость диффузии г, относящуюся к равному числу путей и скачков и затем делит г на Fo — свободную энергию образования окисла, получая таким образом г —скорость ди узии для единицы движущей силы. Значения г теперь начинают показывать степень непрерывности. Для двухвалентных окислов с одинаковым типом решетки г повышается, с уменьшением размера катиона, в то время как в трехвалентных и четырехвалентных окислах г повышается с увеличением размера катиона. Найдено, что значения log г уменьшаются почти по прямой линии, когда они нанесены против AF /RT, где AF является свободной энергией активации. Значения log г изменяются от 7,7 до 11,7, определяя скорости диффузии, которая изменяется на четыре порядка. Различные другие аспекты этой проблемы обсуждаются в статье, которая заслуживает изучения [50]. [c.784]

    При растекании жидкой фазы по твердой иногда впереди фронта растекания наблюдается образование ореола , рост которого подчиняется параболическому закону Х = С (при растекании ртути на поверхности цинка, алюминия по железу при температуре 700—750 °С), где X — диаметр ореола , С=сопз1. Это явление объяснено поверхностной диффузией [14], подчиняющейся, по-видимому, законам активированной диффузии. Коэффициент поверхностной диффузии Ds больще коэффициента объемной и межзеренной (граничной) диффузии Ог(Оу<Ог< Оз), а энергия активации Qy> Qr> Qs. [c.243]

    Скорость реакции топохимических ироиессов, лимитируемых диффузией сквозь нарастающий слой твердых продуктов р( акции (окисление ряда металлов, горение высокозольного топлива и т. д.), описывается параболическим законом  [c.876]

    Наконец, к параболическому закону приводит предположение об образовании однородного защитного слоя продукта реакции, в котором скорость диффузии одного или обоих реагирующих веществ должна быть ограничена, что в конечном итоге и определяет скорость всего процесса окисления [138]. Так, в частности, установлено, что при взаимодействии серебра с жидкой серой серебро диффундирует через образующийся слой сульфида серебра, и поэтому реакция, вероятней всего, протекает на границе АдгЗ—5, а не Ag—Ag2S 1[139]. Обычно при параболическом законе наблюдается экспоненциальная зависимость константы скорости, 1 от температуры, что связывают с диффузионным характером процесса. Гомес [140], однако, подчеркивает, что в подавляющем большинстве случаев величины энергии активации, рассчитанные из температурной зависимости, лишены смысла. [c.241]

    Следовательно, при малых значениях пересыщения скорость роста подчиняется параболическому закону, так же как и в модели работ [51—58] с поверхностной диффузией (см. уравнение (3.103) . Для относительно больших значений пересыщения (Д >Д) 51п/г(Д7Д) =ехр(А7Д)/2 и уравнение (3.105) после преобразования с учетом (3.107) принимает вид [c.273]

    Закон роста окисла до -> 500°С является логарифмическим, однако достигаемые толщины слишком велики, чтобы их можно было объяснить переносом под действием электрического поля. Поэтому следует искать другие причины, например образование полостей. Действительный механизм до сих пор не установлен. Выше 5 °С действует параболический закон окисления при направленной внутрь диффузии ионов кислорода. Выше 850°С отмечается паралинейный рост окисла. Окалина состоит из внутреннего плотного слоя постоянной толщины и наружного пористого утолщающегося слоя окислов. Первоначально утолщение происходит по параболическому закону, но через некоторый период времени скорость окисления становится постоянной, соответствующей формированию внешнего слоя. [c.50]

    При окислении по параболическому закону имеются две движущие силы реакций. Первая — градиент концентрации по толщине пленки, и вторая — градиент электрического потенциала. Они соответственно вызывают диффузию и миграцию через пленку. Так как скорости обоих видов перемещения обратно пропорциот нальны толщине, рост толщины окисла можно представить в виде [c.21]

    Параболический закон роста толщины окислов обычно устанавливается для всех металлов при температурах выше некоторого предела. Этот процесс активируется подводом тепла, и его конСтшг-та скорости /С равна /Собхр —(Р// Т)], где <2 — энергия активации процесса диффузии, Я — газовая постоянная, Т — абсолютная температура и — постоянная. Изменение константы скорости в зависимости от температуры для железа [11], для которого характерен параболический закон окисления в интервале температур 250—1000° С, представлено на фиг. 5. [c.22]

    Вагнер [14] рассмотрел как фактор миграции, так и фактор диффузии, управляющие ростом окислов, и описал этот рост при помощи электрических эквивалентов. Хор и Прайс [151 выразиди параболический закон роста при помощи чисто электричёских характеристик х — удельной электропроводности (Ом -см ), чисел переноба анионов, катионов и электронов (тл, Тс, тя соответственно) и уменьшения энергии Гиббса при реакции окисления. Бо(В) согласно уравнению Д О — —гЕ Р. Все эти величины могут быть измерены независимо. [c.25]

    Для сплава Си—51 с содержанием 0,1% 51 рост толщины этой подокалины при 1000° С приближенно подчиняется параболическому закону [31]. При более низких температурах кислород преимущественно диффундирует по границам зерен, которые обогащаются кремнеземом. Для сплава Си—А с содержанием 0,1 % А1 также характерен этот тип разъедания. Более богатые бинарные сплавы этой системы образуют слои с высокими защитными свойствами вследствие диффузии достаточных количеств алюминия к поверхности раздела металл — окисел. В сплавах Си—Ве наблюдается такой же переход от образования защитного слоя к внутреннему окислению, но это изменение происходит при более низких содержаниях бериллия, чем соответствующей добавки в сплавах Си — А1, роскольку скорость диффузии бериллия в меди больше, чем алюминия в меди. В обеих системах сплавов растворенные атомы должны диффундировать к поверхности раздела и образовывать защитный слой прежде чем в сплав проникнет кислород. В большинстве случаев внутреннее окисление является помехой. Оно изменяет механические свойства поверхности и может оказать неблагоприятное влияние при операциях деформации. Последние достижения технологии, однако, показывают, что этот эффект можно использовать для упрочнения металлической решетки. [c.42]

    Если,— говорили они,— объем образовавшегося окисла больше объема исходного металла, то слой окисла должен быть сплошным, и дальнейшая реакция может продолжаться. за счет диффузии металла и кислорода через решетку окисла. Кинетика реакции в этих условиях подчиняется закону диффузии, и в соответствии с законами Фика скорость реакции меняется обратно пропорционально толщине слоя окислов. Такова суть закона параболического роста окислов. Если, наоборот, объем образовавшегося окисла меньше объема исходного металла, то слой окисла, по Пиллингу и Бедвортсу, не может быть сплошным, а должен иметь трещины, через которые молекулярный кислород может легко проникнуть к чистому металлу, какова бы ни была толщина слоя окисла. В соответствии с этой гипотезой скорость такой реакции не должна зависеть от скорости окисления. В этом случае она подчиняется линейному закону. [c.7]


Смотреть страницы где упоминается термин Закон параболический закон диффузи: [c.460]    [c.78]    [c.141]    [c.216]    [c.369]    [c.369]    [c.281]    [c.113]    [c.369]    [c.310]    [c.876]    [c.362]    [c.102]    [c.453]    [c.164]   
Кинетика и катализ (1963) -- [ c.117 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Параболической диффузии закон

Фик, закон диффузии



© 2025 chem21.info Реклама на сайте