Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реагенты органические, классификация

    Органические реагенты, их классификация и применение в анализе [c.216]

    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента 1) экстракция нейтральными реагентами (растворителями), 2) экстракция реагентами кислотного характера, 3) экстракция реагентами основного характера по типу соединений, переходящих в органическую фазу 1) несольватированные молекулярные соединения, 2) сольватированные нейтральные смешанные комплексы, 3) комплексные кислоты, 4) внешнесферные комплексы. Состав соединения в органической фазе будет зависеть от природы экстрагируемого вещества. [c.427]


    КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ РЕАГЕНТОВ [c.275]

    Основные научные работы посвящены физической органической химии, основателем которой он является. Изучал (1926—1933) электронную структуру ароматических соединений. Развил (1926—1934) теорию электронных смещений, или теорию мезомерии, отправляясь от схем Р. Робинсона. Ввел представление об электро- и нуклеофильных реагентах и реакциях, уточнил классификацию эффектов электронных смещений, рассмотрел их причины, осуществил широкое обобщение материала, относящеюся к определению зависимости физических свойств и реакционной способности соединений (по данным химической кинетики) от их электронного строения. Изучал механизм галогенирования и гидратации алкенов. Совместно со своим учеником и сотрудником Э. Д. Хьюзом провел (1933—1946) серию фундаментальных исследований кинетики реакций замещения у насыщенного углеродного атома. Вместе с В. Прелогом разработал общепринятую систему Н- и 8-обозначений для пространственных конфигураций. Автор книги Теоретические основы органической химии (1953), выдержавшей два издания и переведенной на русский язык. [22, 80, 81,322,332,339] [c.209]

    Этот принцип деления, градации некоторых особенностей структуры органических реагентов на наиболее и менее важные в смысле их влияния на аналитические свойства реагента может быть положен в основу классификации органических реагентов. Основой классификации является общее строение реагента, дополнительными признаками — природа функционально-аналитических и аналитико-активных групп. Пример такой классификации для органических реагентов — азосоединений приведен в работе [14]. Конечно, эта система не исключает другие возможные классификации, например, по аналитическому назначению реагента и т. д. [8], Предложенная классификация находится в соответствии с квантово-химическими представлениями. Действительно, воздействие катиона металла на сходные я-электронные системы вызывает и соответствующие, в первом приближении одинаковые, эффекты. Это будет справедливо и в том случае, если природа функционально-аналитических групп у двух реагентов не одинакова. В последние годы появились работы, связанные с квантово-химическим изучением строения и свойств органических реагентов, где эти вопросы рассматриваются более подробно. Укажем только на несколько последних обзорных работ и монографий [14—16]. [c.195]


    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента  [c.427]

    В учебнике в краткой, нетрадиционной форме освещены основные положения органической химии. Изложению фактического материала предшествует краткое описание номенклатуры органических соединеиий, теории химической связи, классификации реагентов и реакций. Классы органических соединений рассмотрены сначала по реакционной способности, а затем по способам синтеза. При этом большое внимание уделено выявлению связи между химическим поведением н электронным строением реагентов. [c.4]

    Органических реакций так много и они столь разнообразны, что, кажется, их невозможно классифицировать однако в действительности все реакции можно отнести лишь к шести категориям. В приводимом ниже описании шести типов реакций показаны продукты, которые образуются непосредственно в результате реакции, хотя многие из них могут вступать в дальнейшие реакции. Все частицы показаны без зарядов, поскольку различно заряженные реагенты могут подвергаться аналогичным изменениям. Данное здесь описание чисто формальное и служит только для целей классификации и сравнения. Все под- [c.271]

    Серьезное внимание автор уделил и промышленным процессам, связанным с получением важнейших органических соединений. Однако большая часть книги, и это естественно, посвящена теоретическим вопросам номенклатуре, стереохимии, классификации реагентов и реакций, типам связей в органических соединениях, основным механизмам реакций, методам очистки и установления строения. Используя множество перекрестных ссылок, для каждого класса органических соединений автор сразу в одной глазе дает все важнейшие реакции. Это значительно облегчает самостоятельную работу с учебником с учетом вечной нехватки времени у учащегося. [c.5]

    Общепринятая классификация всех реакций органических соединений, в том числе и реакций ароматического замещения, строится на несколько формальных брутто-схемах, в которых приводятся только исходные и конечные продукты химического превращения, и общих иредставлениях об образовании или разрыве химических связей. При этом реагирующие частицы условно разделяют на исходное соединение, считающееся субстратом, и атакующий реагент. Последний может быть электронодефицитным, электроноизбыточным или же содержать неспаренный электрон, т. е. являться свободным радикалом. Образование химической связи между субстратом и электронодефицитным реагентом происходит путем обобщения электронной пары, ранее полностью принадлежавшей субстрату. Такой реагент и реакции с его участием считают электрофильными. Наиример, рассматриваемые в настоящей главе реакции ароматического электрофильного замещения в первом приближении могут быть представлены брутто-схемой  [c.33]

    Ниже приведена классификация соединений, в виде которых элементы могут переходить в органическую фазу. Эти соединения отличаются не только по своему химическому составу, но также по механизму их образования и перехода в слой органического разбавителя. Одни из них заранее существуют или преимущественно образуются в водном растворе, и поэтому для их извлечения пользуются, как правило, чистыми разбавителями. Другие, наоборот, образуются в процессе самой экстракции за счет взаимодействия находящегося в органической фазе реагента с катионами металлов, содержащимися в водном растворе. К первому типу соединений принадлежат простые вещества с ковалентной связью и кислоты. Основными представителями второго типа являются хелатные (внутрикомплексные) соединения и ионные ассоциаты. [c.572]

    Классификация реагентов в органической химии [c.184]

    В качестве аналитических реагентов наряду с неорганическими широко используют органические соединения. Органические аналитические реагенты (ОАР) можно классифицировать на основе разных классификационных признаков. В органической химии при классификации соединений по строению и химической реакционной способности считается удобным рассматривать молекулы соединений как состоящие из основной части н одной илн нескольких групп, структурных фрагментов, характерных для данного класса органических соединений и определяющих его химические свойства. Например, спирты или карбоновые кислоты определяют как соединения, содержащие в своем составе гидроксильную —ОН или, соответственно, карбоксильную —СООН группы. Такие группы называют функциональными (ФГ) или реакционными центрами. Функциональность химических соединений характеризуется строением и числом ФГ в молекуле. [c.53]


    Число органических реагентов настолько возросло, что было бы бесполезным занятием пытаться составить хотя бы перечень всех реагентов на различные металлы. Здесь мы ограничимся краткой классификацией реагентов, перечислением основных факторов, влияющих на хелатообразование, рассмотрением равновесных систем при осаждении и экстракции с соответствующими примерами и обсуждением отдельных наиболее важных реагентов. [c.275]

    Если реакция происходит между органической молекулой и неорганической молекулой или ионом, при обсуждении органических реакций с точки зрения электронной теории, к реагентам относят неорганические компоненты системы. При взаимодействии же двух органических молекул оба компонента реакции в равной мере могут рассматриваться как реагенты в этом случае необходимо оговаривать, по отношению к какому из компонентов реакции классифицируют рассматриваемый процесс. Такая классификация является чисто формальной, так как в ней не учитывается взаимодействие реагирующей молекулы с растворителем, которое в некоторых случаях обусловливают как скорость, так и направление процесса в целом- [c.274]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]

    Настоящая глава посвящена в основном теоретическим вопросам, а также проблемам, связанным с практическим осуществлением двух чрезвычайно важных реакций органических соединений — нуклеофильного замещения и отщепления. Однако сначала будет полезно ознакомиться с классификацией и номенклатурой встречающихся при этом органических реагентов и продуктов. Читатель, который уже знаком с этой системой номенклатуры или считает нужным познакомиться с ней позднее, может перейти сразу к стр. 259. [c.254]

    Реакции в органической химии можно классифицировать несколькими путями в зависимости от избранных критериев. Можно основываться на изменении углеродного скелета природе частиц, участвующих в процессе окислительном или восстановительном характере реагентов связывании или удалении структурных элементов кинетике реакции. Каждый из атих критериев классификации позволяет выделить группы реакций, имеющих сходные характеристики," и сделать некоторые обобщения. [c.24]

    Ингольду, который вместе с сотрудниками продолжал в течение ряда лет разрабатывать в этом направлении электронную теорию реакционной способности органических соединений, принадлежит также классификация органических реакций и введение ряда терминов, прочно удержавшихся в науке. В 1933 г. он, например, предлагает заменить термины анионоидный и катионоидный реагенты на более выразительные электрофильный и нуклеофильный , показывающие, что реагенты действуют вследствие их сродства либо к электронам, либо к ядрам. [c.67]

Таблица 1У.2. Реагенты, используемые в методиках химической классификации органических соединений [3] Таблица 1У.2. Реагенты, используемые в методиках <a href="/info/792594">химической классификации органических</a> соединений [3]
    Настоящая глава посвящена в основном теоретическим вопросам, а также проблемам, связанным с практическим осуществлением двух чрезвычайно важных реакций органических соединений — нуклеофильного замещения и отщепления. Однако сначала будет полезно ознакомиться с классификацией и номенклатурой встречающихся при этом органических реагентов и продуктов. Чита- [c.308]

    С точки зрения обычно принятой классификации органических реакций при алкилировании амбидентных анионов субстратом является алкилирующее соединение, а реагентом — анион, имеющий два заряженных атома, за счет взаимодействия с которым протекает процесс, классифицируемый как 5 у2-реакция  [c.161]

    В учебнике планомерно проводится мысль, что органическая реакция — это взаимодействие электрофила и нуклеофила с участием катализатора и растворителя. Поэтому первостепенной задачей при рассмотрении механизма реакции является выявление реакционных центров и направления перемещения электронной плотности в реагентах, Для более полного решения этой задачи характеристике классов предшесгвует краткое рассмотрение таких вопросов, как природа химической связи, классификация реагентов и реакций, теория электронных смещений, общие закономерности органической реакции. [c.5]

    Вместе с тем многообразие и большое своеобразие органических реакций приводит к необходимости и целесообразности их классификации по другим признакам 1) по электронной природе реагентов (нуклеофильные, электрофильные, свободнорадикальные реакции замешения или присоединения) 2) по изменению числа частиц в ходе реакции (замещение, присоединение, диссоциация, ассоциация) 3) по частным признакам (гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, формилирование, карбоксилирование и декарбоксилирование, энолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.) 4) по механизмам элементарных стадий реакций (нуклеофильное замещение 8м, электрофильное замещение 8е, свободнорадикальное замещение 8к, парное отщепление, или элиминирование Ё, присоединение Ас1е и Ас1к и т. д.). [c.184]

    В органической химии кроме этого используется своя классификация, основанная на способности атомно-молекулярных частиц взаимодействовать с носителями положительного или отрицательного заряда или быть к ним безразличными. Такой подход приводит к разделению реагентов на нуклеофильные, электрофильные и электрононейтральные. [c.184]

    Определение характера реагента - радикальный, нуклеофильный и элек-трофильный - позволяет уточнить классификацию органических реакций по типу превращения. [c.85]

    Любая классификация только приближенно отражает явления природы. Не служит исключением и описанная выше классификация реагентов. В ней предусматривается либо полный переход электронов от одного атома к другому, либо образование новой ковалентной связи между двумя атомами путем объединения электронной пары одного из них, хотя кроме гете-рополярных (ионных, электровалентных) и гомеополярных (молекулярных, ковалентных) связей существуют связи переходного типа. Ведь даже в ионных кристаллах нельзя полностью пренебречь существоваш1ем обменных сил, а в органических молекулах валентные связи более или менее полярпы. [c.24]

    Классификация экстракционных процессов. Химические процессы, протекающие при экстракции неорганических соединений органическими растворителями, разнообразны по природе и в ряде случаев довольно сложны. Поэтому классификация экстракционных процессов затруднена. Опубликовано уже довольно много различных классификаций, причем в основу их положены либо природа экстрагирующегося соединения, либо природа реагента, используемого при экстракции. Можно отметить классификации [c.10]

    Ингольд и его сотрудники, как известно, много работали над выяснением механизма реакций органических соединений. При этом они создали определенную классификацию реакций замещения, которая в дальнейшем была перенесена и на реакции комплексных ионов. По Юзу и Ингольду, следует различать реакции нуклеофильного и электрофильного замещения. Нуклеофилйные реагенты предоставляют свои электронные пары центральному атому, а электрофильные приобретают электронные пары от нуклеофильных (лигандов или аддендов). В химии комплексных соёдинений наиболее обычным является положение, когда электрофильный реагент (центральный атом) перетягивает к себе в большей или меньшей степени электронные пары нуклеофильных групп (лигандов). Согласно мнению упомянутых авторов, есть два основных типа реакций нуклеофильного (или электрофильного) замещения. Один из этих типов сводится к тому, что в исходном комплексном ионе Ме—X происходит медленно протекающий процесс разрыва связи Ме—Х, за которым следует быстро протекающий процесс соединения ненасыщенного радикала Ме с новым заместителем (лигандом) L. Процесс может быть выражен схемой  [c.457]

    По классификации Коулсона, реакции органических соединений подразделяются на две основные группы реакции гетеролитическо-го замещения и реакции гомолитического замещения. Согласно электронной теории органической химии, гетеролитическое замещение происходит при действии электрофильного или нуклеофильного реагента. В гомолитических реакциях участвуют незаряженные свободные радикалы, например СвН или ОН.  [c.15]

    Реакции замещения в гидридах во многом сходны с реакциями замещения в органической химии, поэтому для них применима классификация реагентов на электрофильные, т. е. атакующие те положения в молекуле, где сосредоточен отрицательный заряд, и нуклеофильные, к действию которых чувствительны места с пониженной электронной плотностью. При электрофильном замещении установлено влияние полярных свойств заместителя на последующее замещение. Наличие в молекуле гидрида алкильной группы-заместителя с положительным индукционным эффектом облегчает вступление последующей. Наличие отрицательного заместителя в молекуле гидрида, например галогена, затрудняет вступление в реакцию последующего, вследствие чего получаются только однозамещенные производные. [c.32]


Смотреть страницы где упоминается термин Реагенты органические, классификация: [c.127]    [c.407]    [c.90]    [c.5]    [c.6]    [c.6]    [c.288]    [c.37]    [c.171]    [c.268]   
Химический анализ (1966) -- [ c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Органические реагенты



© 2024 chem21.info Реклама на сайте