Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции определение и классификация

    Чтобы помочь абитуриентам, авторы уделяют внимание показу того, как составляется план ответа, как раскрывается логика химической науки. Классификация веществ и реакций, определение понятий и-терминология, номенклатура, схемы и таблицы — все это служит иллюстрацией рассматриваемых положений и способствует обобщению знаний. Далее на основании важнейших общетеоретических положений раскрываются главнейшие свойства неорганических и органических соединений. [c.4]


    Классификация химических реакций реакции соединения, разложения, замещения, обмена. Окислительно-восстановительные реакции. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. [c.501]

    Рассмотренная классификация реакций с технологической точки зрения является, вероятно, не полной и, более того, условной, так как некоторые реакции очень трудно отнести к тому или иному классу (изотопные, ионные и др.). Однако подавляющее большинство реакций относится к определенному классу или типу реакций рассмотренной классификации. [c.101]

    Основные научные работы посвящены физической органической химии, основателем которой он является. Изучал (1926—1933) электронную структуру ароматических соединений. Развил (1926—1934) теорию электронных смещений, или теорию мезомерии, отправляясь от схем Р. Робинсона. Ввел представление об электро- и нуклеофильных реагентах и реакциях, уточнил классификацию эффектов электронных смещений, рассмотрел их причины, осуществил широкое обобщение материала, относящеюся к определению зависимости физических свойств и реакционной способности соединений (по данным химической кинетики) от их электронного строения. Изучал механизм галогенирования и гидратации алкенов. Совместно со своим учеником и сотрудником Э. Д. Хьюзом провел (1933—1946) серию фундаментальных исследований кинетики реакций замещения у насыщенного углеродного атома. Вместе с В. Прелогом разработал общепринятую систему Н- и 8-обозначений для пространственных конфигураций. Автор книги Теоретические основы органической химии (1953), выдержавшей два издания и переведенной на русский язык. [22, 80, 81,322,332,339] [c.209]

    К. Ингольд развил теорию электронных смещений, отправляясь от схем Р. Робинсона. Ввел представление об электро- и нуклеофильных реагентах и реакциях, уточнил классификацию эффектов электронных смещений, рассмотрел их причины. Осуществил щирокое обобщение материала, относящегося к определению зависимости физических свойств и реакционной способности соединений (по данным химической кинетики) от их электронного строения. [c.673]

    Теория активированного комплекса совместно с теорией кинетики сложных реакций, разработанной автором, позволяет дать рациональную классификацию сложных реакций. Актуальность вопроса видна из того, что сложные реакции наиболее часто встречаются на практике между тем до сих пор нет четкого разграничения понятий для ряда даже часто встречающихся типов сложных реакций. Новая классификация делает попытку суммировать и обобщить накопившийся в химии опыт в этой области на основе определенных структурных представлений. Оказывается, что сложные реакции представляют собой линейные структуры, и потому к ним применимы методы структурной алгебры. Последние имеют две стороны изобразительную, или геометрическую, и расчетную, или алгебраическую. В этой главе мы остановимся на новом способе представления сложных реакций. Сущность предлагаемого метода состоит в следующем. [c.283]


    Определение места данного типа сложной реакции в классификации. В разделе 3 этой главы мы наметили классификацию сложных реакций сначала по числу простых реакций т, из которых она состоит, затем при определенном т — по числу вторичных, третичных, четвертичных и т. д. симплексов, из которых состоит комплекс данной сложной реакции. Если же и этих признаков окажется недостаточно, то следующий классификационный признак — это общее число вершин всех симплексов (не принимая во внимание их спайки при образовании комплексов). Матрица позволяет найти место данной сложной реакции в классификации. Для нахождения первой величины т достаточно пересчитать диагональные элементы К в Гг (это и есть т), для нахождения второй величины — пересчитать число занятых мест в каждой строке в матрице Q, для нахождения третьей величины — пересчитать число всех занятых мест во всей матрице Q. В аналитической и притом матричной форме две последние операции выразятся следующим образом (что касается т, то это просто число строк в т, п-матрице С). [c.337]

    Если предположить, что катализ реакции гидрирования бензола возможен только кластерами атомов определенной структуры, то эта реакция в классификации Будара должна быть отнесена к разряду структурно-чувствительных [33]. Поэтому, видимо, удельная активность никеля, фиксированно- [c.95]

    Методы определения скорости химических реакций. Кинетическая классификация химических реакций. .  [c.297]

    При исследовании органических соединений следует пользоваться реакциями для классификации после определения температуры кипения (или плавления), растворимости и после опытов с прокаливанием. На основании этих данных и внешнего вида соединения (цвет, физическое состояние, запах) уже возможно отнести его к одному или двум классам растворимости. Кроме того, эти определения дают указание, какие типы функциональных групп могут присутствовать в соединениях. Следующая стадия исследования состоит в поисках специфических признаков, указывающих на присутствие или отсутствие наиболее часто встречающихся функциональных групп. Для этого следует избрать несколько реактивов для классификации, которые не только давали бы указания на присутствие той или иной функциональной группы, но и помогали бы исключению многих классов соединений. [c.88]

    Существует определенная классификация реакций ионного инициирования процессов полимеризации по типам инициирующих агентов и по механизму их действия. Мы ограничиваемся краткими замечаниями по этому поводу (подробнее см. [1—3]). [c.52]

    Приводится классификация кибернетических функций катализаторов, которая включает обеспечение многократной повторяемости этапов единственно [возможного или резко преобладающего каталитического процесса обеспечение преобладания одной или нескольких определенных реакций из различных возможных обеспечение сопряжения двух (нескольких, многих) процессов задание продуктам реакций определенной структуры. Для простых и сложных каталитических процессов число промежуточных стадий различно, но во всех случаях необходимыми стадиями являются образование промежуточных активных комплексов и их распад. В работе разбирается механизм осуществления катализаторами их кибернетических функций на ряде простых и сложных каталитических процессов. Рисунков 6. Библ. 22 назв. [c.346]

    Вследствие этого были разработаны методы определения характера торможения химическими соединениями электродных реакций и классификация ингибиторов на катодные и анодные. В настоящее время известно, однако, что положение более сложное (стр. 156) на это указывается в литературе [2]. Дальнейшие взгляды на механизм действия солей цинка в качестве ингибиторов коррозии изложены в работе [3] .  [c.130]

    Определение кислотно-основных свойств с точки зрения переноса электронов было использовано рядом английских авторов [2] для классификации реагентов на нуклеофильные (доноры электронов) и электрофильные (акцепторы электронов). Существует также классификация реакций на такие категории. [c.499]

    Первым качественным принципом, очевидно, является рациональная классификация катализаторов, которая дает возможность связывать определенные типы катализаторов с соответствующими типами реакций и тем самым ограничивать круг веществ, обследуемых на каталитическую активность для каждой конкретной реакции. В основу такой классификации можно положить изложенные в главе I соображения Рогинского. [c.152]

    Определение и классификация реакций окисления. В органической химии дать определение реакций окисления не так просто. В отличие от неорганической химии, они обычно не сопровождаются изменением валентности атомов. Общим их признаком не [c.351]

    Ассортимент антиокислительных присадок чрезвычайно широк и многообразен. Исследователями предложено несколько классификаций антиокислителей. Наиболее рациональной, на наш взгляд, является классификация, основанная на участии различных присадок в определенных реакциях цепного процесса окисления [3]. По этому принципу антиокислители можно разделить на следующие группы. [c.355]


    При рассмотрении электронной задачи предполагают, что геометрия молекулы фиксирована. В ряде случаев она известна из эксперимента. При отсутствии соответствующих данных в задачу входит и поиск оптимальной геометрии, что особенно важно в теории межмолекулярных взаимодействий, при рассмотрении структуры промежуточного комплекса в теории химических реакций и в других задачах. При рассмотрении адиабатического приближения (гл. 2, 1) уже упоминалось, что электронные и ядерные переменные не всегда удается разделить. Однако и в этих случаях на первом этапе исследования при расчете электронных характеристик исходят из некоторой заданной геометрии молекулы. Оператор энергии атома и оператор энергии молекулы характеризуются определенными свойствами симметрии, а именно инвариантностью относительно линейных преобразований электронных переменных. При переходе от теории атома к теории молекул изменяется пространственная симметрия, что следует принять во внимание при классификации электронных состояний. [c.187]

    Определение и классификация. Элементы, в которых происходит окисление обычного топлива или продуктов его переработки (водорода, окиси углерода, водяного газа и др.) и за счет изменения изобарно-изотермического потенциала реакции образуется электрическая энергия, получили название топливных элементов. Позднее это понятие было расширено. Топливными элементами стали называться химические источники тока, в которых активные вещества, участвующие в токообразующей реакции, в процессе работы элемента непрерывно подаются извне к электродам. Комплекс батарей топливных элементов и обслуживающих систем, например установка для охлаждения, называется электрическим генератором. [c.48]

    Так, известно, что обычная классификация — деление исследований на весовой в объемный анализ — приводит нередко к противоречиям. Например, по этой классификации гравиметрическое титрование должно быть отнесено к весовому анализу, так как объем в нем не измеряется. Между тем совершенно ясно, что в принципе этот метод аналогичен объемным методам (индикатор, способ расчета). По предлагаемой же нами классификации гравиметрическое титрование совершенно точно можно отнести к группе методов, основанных на измерении количества реактива, а не продукта реакции. Наконец, наша классификация позволяет рассмотреть с общей точки зрения как методы весового анализа, так и методы экстракции, колориметрии и др., в которых определение основано вовсе не на взвешивании. [c.22]

    Объемный анализ объединяет ряд методов классификация методов, входящих в эту группу, ведется обычно по типам реакций. Так, существуют кислотно-основные методы объемного анализу, окислительно-восстановительные методы и т. д. (подробнее об этом см. гл. 14). Общим для всех этих методов служит названный выше принцип основой всех методов объемного анализа является определение количества затраченного реактива. [c.25]

    Классификация методов кулонометрии по типу реакции. В кулонометрии используют значительно больше электрохимических реакций, чем в электровесовом анализе. Одна группа определений основана на восстановлении катионов металлов и выделении последних в свободном состоянии  [c.221]

    Выше рассмотрена классификация методов анализа в зависимости от типа реакции, на которой основано определение. Кроме того, различают методы объемного анализа по способу титрования. Наиболее прост метод прямого титрования, когда определяемый ион непосредственно реагирует с рабочим раствором. К таким методам прямого титрования относится, например, титрование едкой щелочи или углекислого натрия раствором соляной кислоты, титрование щавелевой кислоты или соли закисного железа раствором перманганата и т. п. Наряду с этим большое значение имеют непрямые методы определения из этих непрямых методов наиболее важны метод замещения и метод остатков. [c.280]

    Для анализа газов применяют все три группы методов, рассмотренные в разделе о классификации методов количественного анализа. Для определения отдельных компонентов газовой смеси иногда применяют методы, основанные на измерении количества продукта реакции. Так, например, содержание СО, в смеси газов в некоторых случаях определяют следующим образом. Определенный объем газа пропускают через взвешенный поглотитель, содержащий едкую щелочь. При реакции образуется углекислая соль  [c.446]

    Скорость электрохимического процесса определяется самой медленной стадией, которая в разных электродных реакциях может быть различной по своей природе. Это служит основанием для классификации электрохимических процессов. В любых электрохимических процессах тип поляризации может быть определен ио абсолютной величине эффективной энергии активации, т. е. той энергии, которая необходима, чтобы молекула или ион вступили в электрохимическое взаимодействие, по ее зависимости от потенциала поляризации и скорости перемешивания. Эффективная энергия активации электрохимической реакции может быть определена при постоянном потенциале поляризации по линейной зависимости логарифма плотности тока от обратного значения абсолютной температуры. [c.403]

    Окисление о-аминодифениламинов. При окислении хлорным железом или некоторыми другими окислителями о-аминодифениламины обычно гладко превращаются в феназины. Поэтому выбор этого метода зависит от быстроты и легкости, с которой может быть получен и выделен замещенный дифениламин. Обычным способом получения последнего является реакция между замещенным о-нитрохлорбензолом и замещенным анилином с последующим восстановлением. В старых работах для восстановления о-нитродифениламина широко применяли хлористое олово но, как было показано Эльдерфилдом [61], следует, по-видимому, предпочесть каталитическое восстановление, позволяющее избежать выделения промежуточного о-аминодифениламина. Основные стадии окислительного получения феназинов показаны ниже. Эти реакции имеют значительное число вариантов, которые можно разделить на определенные обобщенные группы, указывающие на вероятный механизм реакции. Эта классификация основана на старых выводах Нитцкого [62], [c.515]

    Основная область научных исследований — химия белка. Разработал (1920—1930) методы получения пептидов, в частности ами-нолизом азлактонов аминокислотами или их эфирами (реакция Бергманна). Открыл (1926) реакцию циклизации К-галогенацил-аминокислот с одновременным де-галогенированием при нагревании с уксусным ангидридом в пиридине с образованием азлакюнов (реакция Бергманна). Установил (1928) способность натрия и лития присоединяться к многоядерным ароматическим углеводородам. Совместно с Л. Зервасом предложил (1932—1936) способы получения исходных производных аминокислот, в частности способ создания К-карбоксипроизводных. Провел цикл исследований, посвященных протеолитическим ферментам и положенных в основу современной классификации последних. Открыл (1934) реакцию определения С-концевой аминокислоты в пептидах через соответствующие альдегиды, полученные превращением пептида в азид, затем в карбобенз-оксипроизводное с последующими гидрированием и гидролизом (карбобензокси-метод, или реакция Бергманна). Издал труды Э. Г. Фи- [c.50]

    Сз ществует множество различных видов химических реакций. При классификации химических реакций им иногда дают определенные названия. Реакцию между кислородом и водородом с образованием воды можно описать как прямое соединение этих элементов. Реакция, протекающая при нагревании окиси ртути, в результате которой образуется ртуть и кислород, может быть названа разложением этого вещества. Хлор реагирует с такими соединениями, как метан GH4, на солнечном свету или в присутствии катализаторов, при этом образуется хлористый водород и хлористый метил H3GI  [c.201]

    Непрекращающийся поиск катализатора, способного выполнять заданную определенную функцию, служит примером проявления более общей и всеохватывающей проблемы выяснения природы и реакционной способности химической связи. В самом деле, возможность взаимодействия двух молекул с образованием конечного продукта определяется способностью этих реагентов претерпевать электронные и структурные перегруппировки. Этот основной вопрос химической реакционной способности следует репгать, исходя из сил взаимодействия между реагирующими молекулами. В присутствии третьего компонента, катализатора, сложность задачи значительно возрастает. При этом можно надеяться, что в лучшем случае удастся установить только связь между химической реакционной способностью и доступными в настоящее время характеристическими параметрами, описывающими электронные и геометрические свойства катализатора. Проблема катализа еще не разработана в такой стенени, чтобы можно было выбрать наилучший катализатор для ускорения превращения реагирующих веществ в конечные продукты в любой данной химической реакции. Однако, как следует из предыдущих глав, некоторые представления о роли катализатора дают возможность разработать определенные классификации, которые в ограниченном количестве случаев, отвечающих установленным схемам, позволяют разумно подойти к подбору катализатора. Несмотря па пользу, принесенную эмпирическими и теоретическими наблюдениями, редко удается подобрать катализатор таким образом, чтобы его поведение характеризовалось полной специфичностью или чтобы его поведение было уникальным. Поэтому важно рассмотреть те факторы, которые влияют на селективность катализаторов, давая тем самым возможность регулировать каталитическую реакцию с целью получения высокого выхода целевого продукта. [c.278]

    Ингольд и его сотрудники, как известно, много работали над выяснением механизма реакций органических соединений. При этом они создали определенную классификацию реакций замещения, которая в дальнейшем была перенесена и на реакции комплексных ионов. По Юзу и Ингольду, следует различать реакции нуклеофильного и электрофильного замещения. Нуклеофилйные реагенты предоставляют свои электронные пары центральному атому, а электрофильные приобретают электронные пары от нуклеофильных (лигандов или аддендов). В химии комплексных соёдинений наиболее обычным является положение, когда электрофильный реагент (центральный атом) перетягивает к себе в большей или меньшей степени электронные пары нуклеофильных групп (лигандов). Согласно мнению упомянутых авторов, есть два основных типа реакций нуклеофильного (или электрофильного) замещения. Один из этих типов сводится к тому, что в исходном комплексном ионе Ме—X происходит медленно протекающий процесс разрыва связи Ме—Х, за которым следует быстро протекающий процесс соединения ненасыщенного радикала Ме с новым заместителем (лигандом) L. Процесс может быть выражен схемой  [c.457]

    Классифицировать азокрасители из-за их многочисленности очень трудно, и общепринятого мнения относительно целесообразности применения определенной классификации не имеется. Принципиально, любая из классификаций может быть построена по признаку химического строения, технического применения или по цвету. Существуют предложения рассматривать огромное число азокрасителей по их химическому строению с подразделением на MOHO-, ДИС-, трис-, тегракис- и вообще полиазокрасители в зависимости от числа азогрупп. Дальнейшее разделение проводят внутри каждого класса в зависимости от порядка реакций азосочетаний и от комбинаций применяемых диазо- и азосоставляющих. Например, если азосоставляющая способна сочетаться с двумя диазосоединениями, красители называют первичными дисазокрасителями если моноазокраситель способен диазотиро-ваться и сочетаться со второй азокомпонентой — красители называют вторичными несимметричными-, если бисдиазосоединение сочетается с двумя одинаковыми азокомпонентами, красители называют вторичными симметричными и т. д. [215]. Внутри каждой группы все-таки приходится разделять азокрасители по признаку их технического применения [216]. Дальнейшую разбивку внутри каждого раздела ведут по совершенно случайным признакам — по применению одной и той же диазо- или азосоставляющей, цвету, некоторым характерным химическим свойствам, присутствию некоторых заместителей и т. п. [c.66]

    Органические соедииения. Перечисленные ниже химические прецарагы необходимы для определения растворимости, для проведения реакций классификации и для получения некоторых (но не всех) производных. Для удобства следует заготовить набор склянок двух родов емкостью ио 100 мл одни с широким горлом, т. е. банки для твердых веществ, и другие — с узким горлом для жидкостей. Склянками большей емкостью, около 500 лы, следует пользоваться для обычных растворителей, например ацетона, бензола, хлороформа, четыреххлористого углерода, диоксана, эфира, лигроина (70—90 ) и толуола. Для группы из 20 студентов в склянках общего пользования можно помещать по 20— 50 г органических веществ, хотя ради экономии химические препараты можно приобретать в упаковках по 50, 100 и 500 г. Действительные количества, необходимые для каждого студента, естественно, меняются в зависимости от природы исследуемых неизвестных соединений, от уменья выбирать реакции для классификации и от способностей студента. [c.329]

    Следовательно под типовой схемой реакции целесообразно подразумевать скелетные схемы, дополненные изображением атомов и групп, связанных с ключевылш атомами, т. е. с атомами, у которых в ходе реакции происходят измепения соотношений связанности. Чтобы придать понятию типовой схемы реакции определенность, необходимо уточнить природу тех атомов и групп, которые должны быть присоединены к скелетной схеме с целью преобразования ее в ту или иную типовую схему. Однако, чтобы не делать типовые схемы слишком громоздкими, неудобными для целей классификации, следует выбрать минимальное число подобных дифференцирующих структурных элементов. [c.199]

    Анализ полученной таким образом рукописи экспериментального тома систематического указателя органических реакций подтвердил, что такого рода указатель, основанный на изложенной системе классификации и кодирования реакций, является чрезвычайно ценным средством поиска ипформации о классах реакций определенного химического типа. Возможности поиска информации о реакциях при помощи такого рода указателя несравненно более высокие и качественно иные, чем при помощи предметных указателей традиционного типа. [c.221]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    Поэтому классификация и определение типа реакций имеют ажнейшее значение при синтезе маршрутов химического превра- eния. В практической реализации рассмотренного подхода (сие- [c.447]

    Рассмотренная классификация (рис. V-8) [46] позволяет выбрать определенный тип реактора, обеспечивающий наибольшее значение максимального выхода промежуточного продукта сложной реакции. При этом рециклический поток является частью потока, выходящего из реактора. [c.129]

    Отметим, что для характеристики элементарных реакций с участием определенных состояний реагентов и продуктов установившаяся в кинетике классификация реакций как экзо- и эндотермических окааьшается недостаточной. В соответствии с этим кроме понятий экзо(эндо)термичесрих реакций как протекающих с выделением (поглощением) тенлот, вводятся понятия экзо(эндо)-эргических реакций как протекающих с выделением (поглощением) энергии. При этом под теплотой понимается та часть энергии, которая не отнесена к определенному состоянию реагента или продукта. [c.42]

    Всегда возможно точно определить реакционную способность кокса для данной реакции с известным механизмом и при строго определенных условиях его проведения это то, что делают, например, при определении реакционной способности по отношению к углекислому газу одним из методов, о которых мы будем говорить ниже. При этом удается классифицировать различные коксы в порядке возрастания их реакционной способности, и с этой классификацией все в основном согласны. Но этим проблема определения реакционной способности не решается, так как точно неизвестло, какие соотношения существуют между определенной таким образом ре-акционной-способностью и поведением кокса в промышленном агрегате, в котором он используется. Например, почти установлено, что в вагранках куски кокса реагируют исключительно по внешней поверхности и что количество кокса, подвергшегося газификации, зависит главным образом от механического дробления кусков кокса по мере опускания их в вагранке, при котором величина внешней поверхности для легко дробящегося кокса значительно увеличивается. При доменной плавке не очень важно констатировать, что кокс А в два раза более реакционноспособен, чем кокс В, если кокс А таков, что температура равновесия в зоне газификации доменной печи устанавливается на 30 или 40° С ниже температуры, которая была бы достигнута с коксом В, что приводит почти к той же самой скорости газификации в обоих случаях. [c.191]

    Лекция 2, Понятие о тлш о-технологическом процессе. Классификация хишческих процессов и реашдий. Основные понятия и определение (селективность, степень превращения сырья, скорость реакции, выход про-.дукции), их взаимосвязь. [c.282]

    Другая схема классификации оксидов основана на проявляемых ими кислотно-основных свойствах при реакциях с водой. Чтобы и здесь как критерий можно было использовать величину отрицательного заряда на атоме кислорода, будем придерживаться определения кислот и оснований по Усановичу (разд. 33.4.3.5) кислота или кислотный оксид — это акцепторы электронов. [c.473]


Смотреть страницы где упоминается термин Реакции определение и классификация: [c.177]    [c.333]    [c.474]    [c.103]    [c.127]    [c.277]   
Изотопы в органической химии (1961) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Реакция классификация

Реакция определение



© 2025 chem21.info Реклама на сайте