Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорид потенциометрическое

Рис. 17. Потенциометрическое титрование нитрата серебра хлоридом натрия Рис. 17. Потенциометрическое <a href="/info/1153979">титрование нитрата серебра</a> хлоридом натрия

    Работа № 3. Определение иодид- и хлорид-ионов в их смеси методом потенциометрического титрования [c.197]

Рис. 21.7. Кривая потенциометрического титрования смеси иодид- и хлорид-ионов нитратом серебра (/) дифференциальная кривая (//) Рис. 21.7. <a href="/info/134078">Кривая потенциометрического титрования</a> смеси иодид- и <a href="/info/910722">хлорид-ионов нитратом</a> серебра (/) дифференциальная кривая (//)
    Рассмотрим, например, потенциометрическое титрование раствора хлорида калия раствором нитрата серебра  [c.297]

    Определение малых количеств иодида в присутствии хлорида потенциометрическим титрованием, [c.185]

    В практике иногда используют упрощенные варианты схем, в которых вместо съемки полных кривых ограничиваются титрованием до какого-либо наперед заданного значения pH. В качестве индикаторных электродов при потенциометрическом титровании наиболее часто применяются стеклянные электроды с водородной и натриевой функциями, хингидронный электрод, хлорсеребряный электрод — при определении хлорид-иона, платиновый электрод — при титровании окислительно-восстановительных систем и др. [c.264]

    При потенциометрическом титровании применяют стеклянный и платиновый электроды или стеклянный и серебряный, а также комбинированные — хлорид серебра/серебро каломель/серебро. Смесь титруют 0,01 н. раствором нитрата серебра. Излишек этого раствора (0,1—0,5 мл) добавляют, чтобы исключить ошибку, которая происходит из-за возможного содержания хлора в применяемых химикалиях и растворах. Проводят холостой опыт. При этом толуола берут 25 мл. [c.189]

    Сущность метода заключается в расщеплении алкилгалогенидов щелочью (омылении), отделении от бензина образовавщихся бромида и хлорида металла с последующим количественным определением ионов брома и хлора с помощью потенциометрического титрования 0,02 н. раствором нитрата серебра. [c.392]

    В Советском Союзе концентрацию солей в нефти определяют по ГОСТ 21534-76, который предусматривает два варианта, потенциометрическое титрование нефти и экстракция солей из нефти водой с последующим ее титрованием. Стандарт СЭВ 2879-81 тоже устанавливает два метода определения хлоридов в нефти метод А предназначен для определения хлоридов титрованием водного экстракта и метод Б - для определения содержания хлоридов более 10 мг/л - неводное потенциометрическое титрование образца нефти. Сущность методик такая же, как и в ГОСТ 24534-76. [c.142]


    Посредством потенциометрического титрования можно определить Б один прием состав раствора, содержащего несколько веществ, если эти вещества образуют с реагентом осадки, значительно (на несколько порядков) отличающиеся значениями ПР. Так, значения ПР осадков иодида, бромида и хлорида серебра при 25°С равны 1,6-10 6,3-10- и 1,56-10 . Для осадков всех этих веществ, т. е. после прибавления к раствору избытка нитрата серебра, выполняются соотношения  [c.635]

    Широкое применение в потенциометрическом анализе нашли окислительно-восстановительные реакции. Рассмотрим, например, процесс потенциометрического титрования хлорида трехвалентного железа хлоридом титана РеЗ+ + Т1 +- Ре + + Т1 +. [c.194]

    Кроме этого метода содержание солей определяется по методу ГОСТ 1097—62, который состоит в растворении навески нефти в органическом растворителе и потенциометрическом титровании хлоридов солей азотнокислым серебром. [c.192]

    Работа 21.9. Потенциометрическое титрование. Определение смеси хлороводородной кислоты и хлорида аммония в среде ацетон - зтиленгликоль [c.265]

    Электрохимические процессы в солевых расплавах (галогенид-ные, оксидные, смешанные) отличаются от процессов в водных растворах прежде всего условиями, поскольку первые протекают при достаточно высоких температурах и в средах, не содержащих полярных молекул воды с ее специфическими свойствами. В связи с разнообразием состава, строения и свойств различных солей рассмотрим вопрос об электродных потенциалах на примере простых и наиболее полно изученных хлоридных расплавов. При потенциометрическом исследовании расплавленных хлоридов используют металлические, угольные, графитовые, карбидные, нитридные, оксидные или оксидно-угольные электроды. [c.97]

    Методика определеиия нитрата калия. Полученную после титрования смесь подвергают ионному обмену на анионите АВ-17 в ОН-форме. Для этого раствор пропускают через анионит со скоростью 4 капли в 1 сек. После окончания реакции обмена анионит промывают малыми порциями метилового спирта, заканчивают промывание, пропустив через колонку 50 мл раствора спирта. Полученный раствор, содержащий эквивалентное количеству СГ- йЫО.я-ионов количество ОН -ионов, получаемых в результате анионного обмена нитрата и хлорида, оттитровывают стандартным метаноловым раствором хлористоводородной кислоты потенциометрическим методом в тех же условиях, как и при определении нитрита калия. [c.453]

    Растворы для потенциометрических и спектрофотометрических измерений готовят так, чтобы обе протолитические формы находились в эквимолекулярных количествах. Добавлением рассчитанного количества хлорида натрия следует получить не менее 3—5 растворов со значениями / = 0,005—0,1, [c.664]

    Потенциометрический метод можно применять и для выполнения титрования с осаждением (рис. 13.8). При титровании нейтрального раствора хлорида натрия раствором нитрата серебра хлорид-ионы удаляются из раствора  [c.316]

Рис. 7.1-в. Типичные кривые потенциометрического титрования хлорида вонами серебра. Рис. 7.1-в. Типичные <a href="/info/134078">кривые потенциометрического титрования</a> хлорида вонами серебра.
    Определение Na l основано на прямом потенциометрическом измерении концентрации хлорид-ионов с помощью ионоселективного электрода.  [c.229]

    Определение содержания солей. Для определения содержания солей в тяжелых топливах английскими стандартами предусмотрен метод IP 77, в немецких стандартах ему соответствует метод DIN 51576. Соли по данному методу, являющиеся неорганическими хлоридами, определяют в виде Na l. Пробу, разбавленную растворителем, экстрагируют водой. В экстракте водорастворимые хлориды определяют аналитически индикаторным или потенциометрическим методом. Если экстракт содержит сульфиды, их перед титрованием удаляют. [c.188]

    Показана возможность потенциометрического определения в отработанных маслах хлоридов (хлорселективный электрод) и вольт-амперометрического определения хлорароматическихсоединений [15]. [c.94]

    Основная задача потенциометрического обнаружения к.т.т. -прослеживание изменения э.д.с. гальваническог-о элемента, состоящего из исследуемого полуэлемента с индикаторным электродом и полуэлемента сравнения, обычно насыщенного каломел ного (нас. к.э.) или хлорид-серебряного электрода (х.с.э.), потенциал которых постоянен. Независимо от техники измерения э.д.с. (компенсационным методом или с современными pH метрами) классическим методом наховдения к.т.т. является обнаружение скачка потенциала, отвечаю[цего моменту завершения хи-м ической реакции в испытуемом растворе. [c.136]


    Стандартный потенциал системы Сг(VI)/ r(III) о=1,36 В. Как видно, его значение ниже, чем для системы Mn(VII)/ /Мп(П), но, несмотря на это, метод имеет ряд преимуществ из бихромата калия можно приготовить первичный стандартный раствор, который устойчив при хранении. Кроме того, хлориды окисляются бихроматом только в очень сильнокислых растворах и поэтому не мешают определению. Поскольку в данном случае Fe(II) не оказывает индуцирующего действия, его можно определять в присутствии хлорид-ионов. Точку эквивалентности можно устанавливать потенциометрически или с помощью дифениламиносульфоновой кислоты в качестве окис-лительно-восстановительного индикатора. Можно также применять внешний индикатор — гексацианоферрат(1П) калия. [c.174]

    Сущность работы. Определение основано на дифференцированном титровании стандартным раствором гидроксида калия смеси хлороводородной кислоты с хлоридом аммония в среде ацетон-этиленгликоль (1 1). Установление точной концентрации раствора КОН проводят с помощью щавелевой кислоты как стандартного вещества. Кривая потенциометрического титрования смеси характеризуется двумя скачками первый соответствует оттитровыванию хлороводородной кислоты, второй - NH4 I. По экспериментальным данным строят кривые титрования в координатах Е - У (КОН), мл и AE/AV - V (КОН), мл и находят объемы титранта, соответствующие двум точкам эквивалентности (Kl и Vi), причем V - объем раствора КОН, пошедший на титрование НС1, а разность Vj- К ) соответствует расходу раствора КОН на титрование хлорида аммония. [c.265]

    Осадительное потенциометрическое титрование. К осадительному титрованию относят титрование, основанное на образовании малорастворимых солей серебра и ртути. Эти методы чаще всего используют для определения хлорид-, бромид- и иодид-ионов. В связи с этим осадительное потенциометрическое титрование представляет большой интерес для количественного определения лекарственных веществ, представляющих собой гидрохлориды (декамин, новокаин, эфедрин и др.), гидробромиды (галантамин, скополамин), гидро-иодиды (пахикарпин). [c.194]

    Дифференцированное определение I" и С1" в их смеси проводят титрованием 0,05 н. стандартным раствором нитрата серебра с серебряным индикаторным электродом и Нас.КЭ сравнения. Э. д. с. потенциометрической ячейки измеряют компенсационным методом. Поскольку ПРлд <С ПРддсь В первую очврвдь титруется иодид с большим скачком потенциала в конечной точке, но меньшим, чем при отсутствии хлорида. Теоретически скачок наступает несколько раньше точки эквивалентности, но практически точка эквивалентности и конечная точка титрования совпадают. Кривая титрования из-за присутствия хлорида не симметрична. [c.68]

    Методика определения. В стакан емкостью 100 мл (анодная камера) наливают около мл 2 М раствора серной кислоты, в другой такой же стакан (катодная камера) вносят 50 мл 0,2 М раствора железо-аммо-нийных квасцов, приготовленного в 2 Ai H2SO4, 2—5 мл испытуемого раствора сульфата церия (IV) и 5 мл концентрированной фосфорной кислоты, а в третий стакан емкостью 100 мл помещают насыщенный раствор хлорида калия и погружают Нас. КЭ. В катодной камере фиксируют два пластинчатых Р1 Электрода (1x1 см) и мешалку, а в анодной— третий такой же электрод. Одну U-образную стеклянную трубку наполняют 2 М раствором H2SO4, а другую — насыщенным раствором КС1. Первую используют для создания электрического контакта между йнолитом и католитом, а вторую — между катодной камерой и стаканом с Нас. КЭ. Катод подключают к отрицательному полюсу внешнего источника постоянного тока, к положительному полюсу которого последовательно присоединяют высокоомные сопротивления, миллиамперметр, переключатель тока и анод. Второй электрод в катодной камере, являющийся индикаторным электродом, подключают к положительной клемме потенциометра, а Нас. КЭ — к отрицателыга1 г. Потенциометр приводят в рабочее состояние так, как это принято при потенциометрических измерениях э.д.с. После подбора сопротивления для получения нужной величины тока электролиза (3—10 ма) замыкают цепь переключателем и одновременно запускают секундомер. В рабочем журнале фиксируют величину тока электролиза г э- [c.220]

    Величину pH процесса образования гидроксида находят путем потенциометрического титрования хлорида гидроксидообразующего элемента щелочью. [c.67]

    Чистогу препарата определяют по бесиветности и прозрачности раствора, рН=4—5 (определяемому потенциометрически), отсутствию хлоридов, предельному содержанию сульфи га натрия (не более 0,5 мл 0,01 н. раствора йода на 40 мл 0,59i>-ного раствора), влаги (не более 2% при высушивании до постоянного веса ири 100—105 ), тяжелых металлов, мышьяка. [c.266]

    Количествеиное опреде-пение производят извлечением основания эфиром в присутствии аммиака. Для полноты экстракции при повторном извлечении прибавляют натрия хлорид до насыщения. Пос-ае объединения эфирных вытяжек эфир отгоняют, прибавляют спирт, ацетон, воду и титруют потенциометрически 0,1 и. раствором соляной кислоты с сурьмяным электродом. 1 мл 0,1 и. раствора со.1яной кислоты соответствует 0,03752 г амнно-хинола, которого в препарате должно быть не менее в пересчете на сухое вещество. [c.370]

    Определение с фторидом. Потенциометрическое определение алюминия основано главным образом на титровании фторидом. Имеется несколько вариантов этого метода. В первоначальном варианте компенсационного потенциометрического титрования, предложенном Тредвеллом и Бернаскони [1232], анализируемый раствор титруют раствором фторида натрия в атмосфере СО2 в присутствии нескольких капель смеси Ре (III) и Ре (II), используя платиновый и каломельный электроды. Ре (III) с фторидом образует аналогичный криолиту, но менее прочный комплекс МадРеРб. При титровании сначала реагирует А1, затем Ре (III) из-за связывания Ре (III) в комплекс резко изменяется величина окислительно-восстановительного потенциала системы Ре ,-Ре ". Этот скачок потенциала соответствует эквивалентной точке. Для лучшего сдвига равновесия авторы предлагают использовать смесь воды и этанола (1 1), насыщенную хлоридом натрия. Титруемый раствор должен иметь pH не ниже 2,1. В растворах с меньшим pH фторидный комплекс разрушается и невозможно установить конец титрования. Вариант Тредвелла и Бернаскони оказался все же не очень удобным для практического применения. Скачок потенциала был не очень резким и одно титрование требовало 40— 50 мин. В дальнейшем другие авторы усовершенствовали его. Показано, что для более резкого изменения потенциала в эквивалентной точке Ре (III) надо вводить в небольших количествах [407]. Согласно Талипову и Теодоровичу [392], резкий скачок наблюдается при введении смеси Ре " и Ре " в соотношении 3,5 1. По мнению Поляк [340] и других [441], можно улучшить метод и сократить продолжительность титрования, если в момент, когда первоначальный потенциал начнет падать, добавить еще немного разбавленной кислоты. При этом потенциал системы возвращается до первоначального значения и остается постоянным до эквивалентной точки. [c.86]

    Чирков [481] предложил метод определения алюминия потенциометрическим некомпенсационным титрованием фторидом, с использованием алюминиевого индикаторного электрода в паре с электродом из нихрома. Оптимальное значение pH 3—7, насыщение раствора хлоридом натрия увеличивает резкость скачка потенциала [311, 412, 481]. Метод Чиркова по сравнению с методом Тредвелла и Бернаскони имеет ряд преимуществ продолжительность титрования меньше и не нужно расходовать этиловый спирт. Метод Чиркова нашел широкое применение в лабораториях. Его используют для определения алюминия в стали [248, 418], в никелевых [95], цинковых [65] и магниевых [65, 66] сплавах, в шлаках [228], в почвах [8] и в других объектах. Исследованию этого метода посвящены работы [151, 202, 311, 312]. [c.87]

    Нерастворимые в воде комплексы меди и свинца с относительно высоким содержанием металла представляют интерес для решения ряда новых технических задач. В связи с этим были синтезированы комплексы о-оксифе-нилиминодиуксусной кислоты, обладающие значительной устойчивостью Синтез комплексов мы осуществили взаимодействием дикалиевой соли комплексона с эквивалентным количеством хлорида металла. Оптимальные значения pH образования протонированных комплексоЕ рассчитывались из потенциометрических данных  [c.120]


Смотреть страницы где упоминается термин Хлорид потенциометрическое: [c.399]    [c.479]    [c.189]    [c.302]    [c.148]    [c.347]    [c.3]    [c.4]    [c.9]    [c.11]    [c.636]    [c.502]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.386 ]

Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Бромид потенциометрическое титрование в присутствии хлорида

Определение иодид- и хлорид-ионов в их смеси методом потенциометрического титрования

Потенциометрический метод определения микроконцентраций хлорид-иона

Потенциометрическое титрование хлоридов

Потенциометрическое титрование хлоридом олова

Потенциометрическое титрование. Определение смеси хлороводородной кислоты и хлорида аммония в среде ацетон - зтиленгликоль

Хлорид-ионы потенциометрическое

Хлорид-ионы, определение потенциометрическое

Хлориды и иодиды, потенциометрическое определение

Хлориды, амперометрическое потенциометрическое титро

потенциометрическое



© 2024 chem21.info Реклама на сайте