Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексообразование влияние состава раствора

    На полноту образования комплексных соединений, растворимых в воде или органических растворителях (экстрагируемых соединений), влияет ряд факторов pH, избыток реагента, скорость образования соединения. Влияние pH может сказываться различно. Если в реакции в качестве лиганда участвуют анионы слабой органической кислоты, от величины pH раствора будет зависеть концентрация той формы лиганда, которая участвует в комплексообразовании. Малоустойчивые комплексные соединения при увеличении pH раствора разрушаются или меняют состав вследствие гидролиза иона комплексообразователя. От pH водной фазы зависит процент экстракции комплекса в органическую фазу. [c.43]


    Форма кривой сила тока — напряжение и, тем самым, величина потенциала полуволны могут изменяться под влиянием различных факторов. Так, например, потенциалы восстановления ионов металлов, присутствующих в растворе в виде аквакомплексов, изменяются при образовании комплексов с другими лигандами. При комплексообразовании обычно наблюдается смещение потенциала полуволны в сторону более отрицательных значений. Исследование такого смешения в зависимости от концентрации комплексообразующего вещества позволяет найти состав и константы образования комплекса. На потенциал полуволны может также оказывать влияние pH раствора, которое связано с изменением или природы имеющихся комплексов или продуктов электролиза. Преимущество полярографических методов по сравнению с другими электрометрическими методами в том, что электролизу подвергается лишь небольшой объем раствора, и, кроме того, концентрация вещества, подлежащего исследованию, в этом растворе может быть очень малой. Количественные полярографические исследования, как правило (исключения см. гл. 1), возможны только тогда, когда имеются следующие предпосылки. [c.211]

    Полимерная природа и трехмерная структура комплексита обусловливают специфическое влияние состава раствора на его сорбционные свойства и селективность сорбции ионов переходных металлов. Состав раствора (природа и концентрация всех его компонентов) определяет не только состояние ионов металла и функциональных грунн комплексита, но и их основность, степень набухания полимера, возможность протекания наряду с комплексообразованием других процессов. Поэтому природа и концентрация компонентов раствора влияют на энергию координационной связи Ь- М и энергетические затраты системы на комплексообразование в фазе ионита, т. е. на константу равновесия реакции комплексообразования (I) Кр. Наряду с этим изменение концентрации участвующих в комплексообразовании компонентов системы смещает равновесие реакции (I) и влияет на степень закомплексованности ионов металла ионитом, а также на возможность осуществления в фазе комплексита наряду с комплексообразованием других процессов (образования осадков основных солей и гидроксидов, ионного обмена, доннановского распределения). В целом сорбция катионов переходных металлов комплекситами происходит в результате указанных [c.203]

    Кондуктометрические определения могут быть основаны на реакциях комплексообразования. При этом образующиеся комплексы должны отличаться высокой устойчивостью, иметь определенный состав с постоянным координационным числом. Поскольку в ряде случаев реакции комплексообразования вызывают изменение концентрации ионов водорода в растворе, большое влияние на возможности определений оказывают значения pH среды при титровании. В тех случаях, когда решение необходимо проводить только при определенных значениях pH, добавляют буферные растворы. Влияние буферных растворов на характер кондуктометрических кривых титрования может быть установлено в каждом конкретном случае. В результате реакции комплексообразования в растворе одни ионы заменяются другими. При добавлении буферных растворов в титруемый раствор вводятся новые ионы. Подвижности находящихся в титруемом растворе ионов влияют на характер кондуктометрических кривых титрования. [c.97]


    Таким образом, реакции образования окрашенных соединений ионов металлов с анионами слабых кислот следует проводить по возможности в менее кислых средах. Однако уменьшение концентрации Н+ следует осуществлять очень осторожно, так как при повышении pH раствора может происходить образование основных солей или гидроокисей определяемых металлов может изменяться состав окрашенного соединения вследствие ступенчатости комплексообразования. В некоторых случаях, когда влияние конкурирующего комплексообразования ОН-ионов преобладает над влиянием депротонирования [c.16]

    В связи с тем, что в одном и том же электролите потенциалы зубцов элементов специфичны для каждого элемента, методом амальгамной полярографии с наконлением можно определить качественный состав раствора. В различных лектролитах при прочих равных условиях потенциалы зубцов одного и того же элемента из-за комплексообразования и различной обратимости электродных процессов имеют различное значение. Применение в методе амальгамной полярографии с накоплением электролитов различного состава обусловлено необходимостью создания условий при нолярографировании для получения раздельных анодных зубцов определяемых элементов при их совместном присутствии в растворе. Теоретически [3] и экспериментально установлено, что в полярографии с линейно меняющимся потенциалом скорость изменения потенциала оказывает незначительное влияние на потенциал катодного и анодного зубцов. При измерении потенциала на электроде при помощи классического полярографа изменение потенциала практически не будет приводить к смещению потенциала зубца. Теоретические выводы [3] и большой экспериментальный материал показывают, что потенциал пика как для обратимых, так и для необратимых электродных процессов не зависит от концентрации восстанавливающегося или окисляющегося вещества. [c.153]

    Единой точки зрения на роль активаторов в процессе образования карбамидного комплекса и их влияние на механизм комплексообразования до настоящего времени нет. Циммершид и Диннерштейн [20] считают, что активаторы ослабляют или совершенно прекращают действие примесей, которые мешают проведению реакции комплексообразования. Для подтверждения этого положения парафины, выделенные при помощи карбамида из нефтяной фракции, повторно контактировали с карбамидом. Комплекс при этом образуется лишь при добавлении активатора. После тщательной очистки силикагелем эти парафины образуют комплекс и без активатора. Однако после добавления к очищенным парафинам веществ, извлеченных десорбцией из массы силикагеля, реакция идет только в присутствии активатора. Анализ примесей, адсорбировавшихся на силикагеле, показал, что в их состав входят различные неуглеводородные соединения, в том числе сернистые соединения перекисного строения. Было высказано предположение, что активаторы, растворяя карбамид, препятствуют обволакиванию кристаллов карбамида неуглеводородными примесями. А. В. Топчиев и Л. М. Розенберг с сотр. [18, 56] показали, что применение активаторов при работе с нефтяными фракциями обусловлено присутствием в этих фракциях веществ, подавляющих реакцию комплексообразования. [c.38]

    Исследование влияния pH на комплексообразование в системе индий — ализарин S показало, что при pH 5,0 оптическая плотность растворов ализарината индия достаточно высока. При указанном значении pH была снята кривая светопоглощения исследуемого комплекса, установлен его состав и определен молярный коэффициент погашения. Кривая светопоглощения алазарината индия представлена на рис. 1. Она показывает, что максимум светопоглощения комплекса лежит в области 530 мр.. [c.253]

    Данные работы [124] получены при изучении экстракционных равновесий. Сущность этого метода состоит в исследовании влияния комплексообразования на экстрагируемость тория из водных его растворов бензольным раствором подходящего экстрагента. Особого внимания заслуживает работа Набиванца и Кудрицкой [129], которые, пользуясь методом электродиализа и ионообменной хроматографии, определяли состав ионов, образуемых торием в растворах хлорной, азотной и соляной кислот различных концентраций. Помимо определения констант устойчивости катионных комплексов, значения которых хорошо согласуются с данными, полученными из экстракционных равновесий, авторы показали существование анионных комплексов тория при концентрациях НС1 выше 6—7 М и НЫОз выше 5 М. В хлорнокислой среде были обнаружены только катионы ТН +. [c.240]

    Таким образом, реакции образования окрашенных соединений ионов металлов с анионами слабых кислот следует проводить по возможности в менее кислых средах. Однако уменьшение концентрации Н" необходимо осуществлять очень осторожно, так как при повышении pH раствора может происходить образование основных солей или гидроксидов определяемых металлов может изменяться состав окрашенного соединения вследствие ступенчатости комплексообразования. В некоторых случаях, когда влияние конкурирующего комплексообразования ОН-ионов преобладает над влиянием депротонирования реагента, повышение pH раствора может привести к противоположным результатам, т. е. к уменьшению степени связанности иона М в окрашенное соединение. Поэтому максимальный выход светопоглощающего комплекса будет наблюдаться только в определенном интервале значений pH раствора. [c.26]


    Для амперометрического определения галлия можно применять только реакции осаждения и комплексообразования, так как окислительно-восстановительные реакции для него, как известно, нехарактерны. К наименее растворимым соединениям галлия относится его ферроцианид, образованием которого воспользовался еще Лекок де Буабодран при выделении галлия из кислых растворов. Состав ферроцианида галлия установлен И. В. Тананае-вым и Н. В. Баусовой [1], разработавщими также амперометрический метод определения по току окисления ферроцианида на платиновом электроде. Конечная точка отвечает молярному отношению галлий ферроцианид = 4 3, т. е. осадок имеет состав Оа4[Ре(СЫ)б]з- Растворимость ферроцианида галлия очень мала— можно определять до 10 мкг галлия в 20 мл. Алюминий, который почти всегда сопутствует галлию в растворах, не мешает титрованию, хотя при относительно больших количествах алюминия ток окисления ферроцианида заметно понижается, вследствие чего определение конечной точки становится менее отчетливым. Влияние алюминия было замечено и при других титрованиях и может быть устранено титрованием с таким электродом сравнения, потенциал которого лишь не намного отличался бы от потенциала окисления ферроцианида, например с перманганатный э 1ектродом (см. гл. V). [c.137]

    Окрашенные комплексы с анионами слабых кислот. Когда в качестве реактива используют слабые органические кислоты НК (салициловая кислота, ализарин, диметилглиоксим п другие), изменение рИ раствора оказывает довольно сильное, хотя внешне и мало заметное влияние. Полнота связывания иона М в окрашенное соединение МК зависит от концентрации в растворе анионов реактива К", которая, в свою очередь, зависит от концентрации Н+ в растворе. В кислых растворах концентрация К бывает невелика, так как равновеспе диссоциации слабой кислоты сильно смеш ено в сторону образования недиссоциированной (кислотной) формы реактива. Увеличить концентрацию К путем повыитения обш,ей концентрации реактива не всегда удается, так как слабые органические кпслоты часто имеют ограниченную растворимость. В этом случае концентрацию К увеличивают повышением pH раствора, которое смеш,ает равновесие диссоциации реактива НК Н+ К в сторону образования К (ионы водорода связываются понамп гидроксила). Таким образом, реакцию образования окрашенных соединений ионов металлов с анионами слабых органических кислот следует проводить по возможности в ще.ючиых средах. Однако уменьшение концентрации Н+ следует осуществлять очень осторожно, так как при повышении pH раствора может происходить образование основных солей пли гидроокисей определяемых металлов кроме того, при изменении pH раствора может изменяться состав окрашенного соединения вследствие ступенчатости комплексообразовання. [c.13]

    Из предыдущих глав отчетливо следует, что в большинстве растворов имеет место существенное взаимодействие между растворителем и растворенным веществом. Поэтому растворитель никогда не следует рассматривать как инертную среду, в которой происходят те или иные реакщ1и. В процессе реакции растворенных ионов (и молекул) координированные молекулы растворителя являются почти такими же важными реагентами реакций, как и сами ионы (или молеку лы). И неудивительно поэтому, что растворитель оказывает чрезвычайно сильное влияние на ход химических реакций в растворах, в том числе реакций комплексообразования, равно как и на состав, структуру и устойчивость комплексов в растворах. [c.182]

    Влияние температуры на состав и устойчивость комплексов железа в водных растворах алифатических кислот. Термодинамические функции образования ацетатных и маслянатных комплексов железа Гетерополиядерпое комплексообразование. .  [c.303]

    Комплексообразование как способ понижения концентрации свободных ионов металла в растворе находит в аналитической химии широкое применение, особенно при осуществлении реакций маскирования и демаскирования , при осаждении гидроокисей металлов, сульфидов и металлорганических комплексов, а также в количественных экстракционных методах. Свойства комплексов важны также для ионного обмена и хроматографии. Комплексные соединения используют и при окончательном определении элементов при помощи таких физических методов, как спектрофотометрия, потенциометрия, полярография, хронопотен-циометрия или кондуктометрия. Электроосаждение как метод отделения или выделения различных элементов тоже связано с использованием процесса комплексообразования последний может обеспечить присутствие ионов металлов в достаточно низких концентрациях (это необходимо для получения ровных и плотно прилегающих осадков), а также позволяет создать условия, гарантирующие выделение из растворов лишь определенных металлов. На рис. 1 показано влияние концентрации лиганда на относительный состав обычной смеси, которая может быть подвергнута электролизу. В последнее время комплексометрическое титрование, особенно с применением этилендиаминтетрауксусной кислоты (EDTA) и ее производных, позволило проводить прямое объемное определение ионов металлов в растворе. [c.107]

    Состав экстрагируемого комплекса чаще всего находят двумя методами методом изомолярных серий [10—11] и методом предельного логарифмирования [12—15]. При первом методе экстрагируют различные количества металла экви-молярньш раствором реактива при постоянном общем объеме фаз. Определяют количество экстрагированного металла в каждом опыте и находят молярное соотношение максимума экстракции (комплексообразования) графическим путем. Если требуется выяснить влияние кислотности или щелочности на состав комплекса, находят указанное соотношение при различных значениях pH. [c.7]


Смотреть страницы где упоминается термин Комплексообразование влияние состава раствора: [c.132]    [c.41]    [c.22]    [c.132]    [c.107]    [c.94]    [c.97]    [c.175]   
Современная аналитическая химия (1977) -- [ c.340 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние комплексообразования

Комплексообразование

Комплексообразование влияние pH раствора

Комплексообразование растворах

Комплексообразованне

Растворов состав



© 2025 chem21.info Реклама на сайте