Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация радиоактивным излучение

    Гамма-лучи представляют собой проникающие электромагнитные колебания с длиной волны приблизительно от 0,005 до 0,4 А и с энергией 0,05—5 Мэе. Они распространяются со скоростью света их проникающая способность гораздо выше, чем у самого жесткого рентгеновского излучения длина пробега в воздухе составляет несколько километров. Гамма-лучи в отличие от альфа- и бета-излучения ионизируют материю косвенно посредством электронов, которые при столкновении с фотонами гамма-излучения получают часть их энергии и отрываются от атомов. Эти электроны при столкновениях с атомами и вызывают ионизацию. Бета-распад часто сопровождается гамма-излучением. Методы определения и измерения интенсивности радиоактивного излучения основаны на его ионизирующем действии. На этом же явлении основаны и принятые единицы дозы разных видов излучения. [c.644]


    Биологическое действие радиоактивных излучений характеризуется ионизацией атомов и молекул тканей и органов человека, в результате чего происходит разрыв нормальных молекулярных связей и изменение химической структуры различных соединений. Изменение в химическом составе значительного числа клеток молекул приводит к нх гибели. Поэтому чем боль[це в веществе актов ионизации под воздействием лучей, тем сильнее биологический эффект. [c.55]

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]

    Сущность этого способа, который в последние годы широко применяют в промышленности, заключается в нейтрализации поверхностных электростатических зарядов ионами, которые образуются при применении прибора-нейтрализатора. Этот прибор создает большое число ионов, взаимодействующих с противоположными по знаку зарядами. Ионизация воздуха осуществляется двумя способами действием электрического поля высокого напряжения и радиоактивным излучением. [c.342]

    Детекторы сечения ионизации. Детектирование газов можно осуществить на основе поглощения ими радиоактивного излучения. Л еханизм процесса, проходящего в камере такого детектора, заполненного водородом в качестве газа-носителя, может быть представлен следующим образом  [c.44]


    Кроме ионизации радиоактивное излучение может вызвать возбуждение атомов вещества, через которое оно проходит. [c.90]

    Проникая в тело человека, радиоактивные излучения вызывают так называемую ионизацию среды, в результате которой в тканях организма развиваются химические реакции, не свойственные обычному состоянию организма, что ведет к нарушению его нормальных функций. [c.83]

    Ионизационные методы. Эти методы основаны на ионизирующей способности радиоактивного излучения. В общем случае измеряют количество заряда, образовавшегося в камере за определенное время. Показателем ионизации может служить скорость утечки заряда, сообщаемого электроскопу. Часто для этого пользуются элементарным электроскопом — двумя тонкими металлическими листочками. В случае более сильной ионизации можно пользоваться электрометром. [c.116]

    Радиоактивные излучения, ионизация среды вызывают лучевую болезнь, которая при больших или продолжительных воздействиях протекает длительно и тяжело или заканчивается смертельным исходом. [c.84]

    Дифференциальное детектирование заключается в том, что на выходе из колонки измеряется какое-либо свойство бинарной смеси (газ-носитель — компонент) и сравнивается со свойством чистого газа-носителя. Примером такого детектора является катарометр, в котором сравнивается теплопроводность чистого газа-носителя и газа-носителя в смеси с компонентом. По величине силы тока, измеряемой микроамперметром, можно судить о количественном содержании компонента. Наиболее чувствительными являются ионизационные детекторы. Ионизация молекул в них происходит под влиянием радиоактивного излучения, электрического разряда или пламени. [c.227]

    Детектор по электронному захвату. Процессы, происходящие в детекторе по электронному захвату, схематично показаны на рис. VI.7. Под действием радиоактивного излучения трития в камере детектора происходит ионизация молекул азота и образуются медленные электроны  [c.188]

    Один из ионизационных приборов для измерения радиоактивных излучений — газоразрядный счетчик Гейгера (рис. 5). Он представляет собой стеклянный или металлический цилиндр, заполненный смесью инертных газов (аргона и неона) с добавкой галогенов— хлора и брома. Боковая поверхность металлического цилиндра (или слой металла, нанесенный на поверхность стекла) является катодом счетчика. Анод —тонкая металлическая нить, находящаяся внутри цилиндра. На электроды счетчика поступает постоянное напряжение. При попадании радиоактивного излучения в объем счетчика через тонкое слюдяное окошко происходит ионизация газа в объеме счетчика. При этом электроны устремляются к аноду, а положитель- ные ионы — к катоду. В результате в цепи счетчика возникает импульс тока, а на сопротивлении нагрузки — импульс напряжения. Последний усиливается специальной счетной установкой Б-2 и приводит в действие механический счетчик — регистратор импульсов. [c.20]

    Аргоновый детектор Ловелока. В качестве газа-носителя применяется аргон. Для ионизации молекул аргона применяется радиоактивное излучение. Принцип действия детектора сводится к следующему. При электронной бомбардировке аргона возникают возбужденные метастабильные атомы энергия возбуждения их достигает 11,6 эв. Они в свою очередь ионизируют анализируемые молекулы. Ионизация молекул происходит в том случае,если их потенциал ниже энергии возбуждения атомов аргона. Вследствие этого детектор не пригоден для определения азота, кислорода, метана, двуокиси углерода, паров воды. Он пригоден для определения большинства органических веществ, обладающих низким ионизационным потенциалом.. [c.249]

    Пусть пластинки из меди и цинка помещены в вакууме на некотором расстоянии друг от друга и соединены вольтметром с весьма большим сопротивлением. Вследствие контактной разницы потенциалов между пластинками возникает электрическое поле. Если теперь подвергнуть воздух между пластинками облучению каким-либо источником радиоактивного излучения (а- или р-излучате-лем), то произойдет ионизация, и газовые ионы будут двигаться к пластинкам и разряжаться на них в соответствии со своим знаком. [c.189]

    Вольта-потенциал может быть обнаружен экспериментально в ряде явлений при ионизации воздуха между металлами радиоактивным излучением при размыкании и замыкании металлов (опыты Вольта) между нагретыми металлами в вакууме, так как при нагревании электронная эмиссия настолько увеличивается, что обусловливает достаточную проводимость между металлами. [c.384]

    При напряжениях, лежащих выше точки В, электроны, образовавшиеся под действием радиоактивного излучения, разгоняются в электрическом поле до таких скоростей, что производят вторичную ионизацию молекул газа. В области ВС вторичная ионизация пропорциональна величине первичной ионизации. Эта область напряжений, в которой работает пропорциональный счетчик. [c.335]


    Другой широко распространенной группой детекторов, применяющихся во многих марках газовых хроматографов, являются детекторы, действие которых основано на измерении тока, з/ юат проходящего через ионизированный газ между двумя электродами. К этой группе относятся детекторы, в которых ионизация молекул может осуществляться под действием электрического разряда в вакууме либо в пламени при наличии электрического поля или под действием радиоактивного излучения. Наиболее распространен пламенно-ионизационный детектор. Работа его основана на том, что пламя чистого водорода почти не содержит ионов и поэтому обладает очень малой электропроводностью (фоновый ток порядка Ю А). При наличии газов или паров анализируемых веществ (за исключением СО, СО2, OS, Sj, H.jS, О2, Н2О, инертных газов) происходит ионизация пламени, возникают ионы и радикалы, электропроводность пламени резко возрастает (ток порядка 10- А), что и служит индикатором на присутствие в газе-носителе анализируемых веществ. Схема одного из пламенно-ионизационных детекторов приведена на рис. 38. Элюат смешивают с водородом и подают в сопло горелки, куда поступает очищенный воздух. Горение [c.93]

    Существует большое количество детекторов ионизационного типа, основанных на том, что ионы в них образуются в результате радиоактивного излучения, источник которого размещается в специальном контейнере в камере детектора. К ним относятся детектор поперечного сечения ионизации, аргоновый, аргоновый триод-ный, электронозахватный и др. Подробно с этими тина- [c.123]

    Камера Вильсона является одним из старейших методов исследования в ядерной физике. Регистрация радиоактивного излучения с помощью этого прибора основана на том, что пересыщенный пар, заполняющий камеру, при попадании во внутреннее пространство камеры радиоактивной частицы конденсируется на пути следования (по треку) этой частицы. Это обусловлено тем, что при ионизации молекул пара, заполняющего камеру, образуются центры конденсации и, таким образом, трек частицы становится видным. [c.116]

    Обнаружение радиоактивных излучений. Основными методами обнаружения излучений, применяющимися в аналитических исследованиях, являются 1) измерение степени ионизации газа электрическим путем, 2) наблюдение вспышек видимого света, производимого излучением (сцинтилляции), и 3) фотографический метод. Непосредственное действие радиоактивных излучений на фотографические материалы особенно удобно для составления карт распределения радиоактивных веществ в поверхностных слоях твердых материалов, таких, как минералы или биологические образцы. Этот процесс известен под названием радио- [c.212]

    Детектирование может быть интегральным и дифференциальным. При интегральном детектировании фиксируется общее количество компонентов (например, их общий объем). Вследствие малой чувствительности и инерционности интегральные детекторы применяют крайне редко. Дифференциальное детектирование (более чувствительное) обеспечивает фиксацию концентрации компонентов. Наиболее распространенными детекторами являются ка-тарометры (регистрируют изменение теплопроводности газов по изменению электрического сопротивления проводника), ионизационные детекторы (по току ионизации молекул газа под воздействием пламени или радиоактивного излучения), детекторы плотностн, или плотномеры (по плотности газа), пламенные детекторы (по температуре пламени, в котором сгорает элюат) и др. [c.178]

    Таким образом, в зависимости от типа частицы, ее энергии, химического состава образца, времени облучения в смазочном материале происходят различные микроскопические изменения, начиная от ионизации атомов и молекул и кончая полным превращением одних атомов в другие. При этом разрываются химические связи и образуются свободные радикалы, ионы и радикал-ионы, которые обладают свободными валентностями и избыточной энергией. В результате в облучаемой среде возникают различные химические реакции синтез и разложение, полимеризация и деструкция, окисление и восстановление, изомеризация или любая комбинация из этих процессов. Совокупность микроскопических процессов, происходящих под действием радиоактивного излучения, вызывает возникновение макроскопических эффектов в смазочных материалах. Изменения, которые при этом претерпевают смазочные материалы, могут быть весьма значительными и зачастую приводят к полной потере их эксплуатационных свойств. [c.240]

    Ионизационные детекторы. Весьма чувствительными являются ионизационные детекторы. К этой группе относятся детекторы, в которых ионизация молекул может осуществляться под действием электрического разряда в вакууме, либо в пламени при наличии электрического поля, или же под действием радиоактивного излучения. [c.176]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]

    Природа газа-носителя влияет на чувствительность детектирования во-первых, в разных газах при неизменных условиях хроматографирования различна энергия и подвижность электронов, а, следовательно, и вероятность захвата неодинакова. Во-вторых, в разных газах различна подвижность ионов, а, следовательно, и скорость процессов рекомбинации. В-третьих, радиоактивное излучение проникает в разных газах на различное расстояние, т.е. поглощение излучения и ионизация будут различны. [c.76]

    Вольта-потенциал может быть обнаружен экспериментально в ряде явлений. Как уже говорилось, контактный потенциал может быть измерен при ионизации воздуха между металлами радиоактивным излучением он обнаруживается при размыкании и замыкании металлов (опыты Вольта). [c.710]

    Обычно в ионизованных системах, находящихся в ква-зиравновесном состоянии, количество положительно и отрицательно заряженных частиц примерно одинаково или очень редко отрицательно заряженных частиц больше, чем электронов. Так как электроны в силу своей малой массы двигаются с большей скоростью, чем атомы и ноны, то нейтрализация иона определяется в большей степени столкновениями ионов с электронами, чем ионов с ионами. Только в газах при высоких давлениях или при ионизации радиоактивным излучением, а также в сильно нагретых ионизованных газах осуществляются условия, при которых начинает преобладать рекомбинация ионов с ионами. [c.103]

    Радиометрические методы анализа твердых и жидких веществ основаны на использовании явлений поглощения и отражения радиоактивных излучений веществом или на возбуждении вторичного излучения в анализируемой пробе. При анализе газов эти эффекты не подходят, так как газы вследствие их малой плотности почти не оказывают влияния на излучение. Важное значение имеет изменение электропроводности газов при воздействии излучения, обусловле.шое ионизацией атомов и молекул газа. Индуцированная электропроводность зависит от химических и физических свойств газов, что позволяет провести анализ газов или их смесей. На этом принципе основано действие ионизационных анализаторов. Ионизационный анализатор состоит из ионизационной камеры и прибора, измеряющего ток ионизации (рис. 6.13). В камере закреплен радиоактивный препарат, излучение которого вызывает ионизацию пробы анализируемого вещества, находящейся в межэлектродном пространстве. Электрометром измеряют возникающий ионный ток, который при постоянной толщине радиоактивного препарата и постоянном электрическом поле зависит от плотности и состава газа. [c.324]

    Ионизация воздуха или среды, в частности внутри аппарата, емкости и т. д. Сущность этого способа заключается в нейтрализации поверхностных электроста-тических зарядов положительными и отрицательными ионами, которые образуются при -использовании специального прибора, называемого нейтрализатором. Ионы, взаимодействуя с положительным зарядами статического электричества, нейтрализуют их. Ионизация воздуха достигается двумя способами действием электрического поля высокого напряжения и радиоактивным излучением. [c.151]

    На нонизацпонном эффекте, производимом радиоактивным излучением, основан принцип работ следующих типов детекторов ионизационной камеры, пропорционального счетчика и счетчика Гейгера — Мюллера. Все эти детекторы представляют собой наполненные той или иной газовой смесью сосуды, которые имеют два электрода. Схема включения детектора показана на рис. 125. Механизм ионизации газов излучением различного типа и энергии не одинаков, но энергия, затрачиваемая на образование пары ионов во всех случаях составляет около 34 эв. Величина первичной ионизации, т. е. ионизация, производимая ядерной частицей непосредственно, зависит только от доли энергии, [c.334]

    При взаимодействии радиоактивного излучения с веществом происходят процессы ионизации и возбуждения атомов и молекул. Фотоны и частицы с достаточно высокой энергией могут вызвать ядерные реакции. Однако преобладающий процесс — взаимодействие излучения с электронами атомных оболочек и электрическим полем атомного ядра. При подобном взаимодействии частицы или фотоны теряют энергию или часть ее. Некоторые столкновения приводят к изменению направления движения частицы. Это значит, что радиоактивное излучение абсорбируется и рассеивается веществом. Указанные процессы взаимодействия положены в основу методов обнаружения а-, Р- и у-излучения. На этом же принципе основаны методы радиометрического анализа веществ без их разру шения [1,2, 6]. [c.304]

    Во многих случаях устойчивость аэрозолей увеличивается благодаря присутствию стабилизатора. Стабилизация при этом осуществляется путем приобретения электрического заряда или путем образования защитных слоев на поверхности частиц. Электрический заряд частиц возникает либо в результате адсорбции ионов-из газовой среды или за счет ионизации газа (воздуха) под действием ультрафиолетовых, рентгеновских и космических лучей, а также радиоактивных излучений либо, наконец, за счет трения. Знак заряда пылевых частиц зависит и от химического состава пыли и дыма основные вещества (СаО, ZnO, MgO, РегОз) дают отрицательно заряженные пыли, а кислые (SiOj, РгОб, а также уголь) — положительно заряженные. В отличие от гидрозолей частицы аэрозолей не имеют диффузного слоя ионов (слоя противоионов) кроме того, частицы в аэрозолях могут jie TH paMH4№ie по знаку и величине заряды или быть нейтральными. При этом наибольшую устойчивость проявляют аэрозоли с одноименно заряженными частицами. [c.350]

    Существуют также детекторы по теплоте сгорания (термохимические), по плотности газов (денситометрические) и др. Наиболее чувствителен аргоновый детектор Ловелока. В нем в качестве газа-носителя применяется аргон, а для ионизации молекул — какой-либо источник радиоактивного излучения. Детекторы, даже работающие по одному принципу, имеют различные конструктивные особенности. Например, детектор по теплопроводности может быть двух- и четырехплечевым. Чувствительность четырехплечевого детектора в два раза выше, чем двухплечевого. [c.67]

    Наконец, чаще всего используемый метод основан на непосредственном учете ионизации воздуха под действи-Рис. XVI- . Спинтарископ. ем радиоактивного излучения. Так [c.490]

    Радиоактивностью называется способность атомов неустойчивых изотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важнейшими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газоЁ, т. е. возбуждение в них электропроводности  [c.218]

    Ионизационные методы основаны на измерении электрич. проводимости ионизованных газовых смесей. Ионизацию осуществляют радиоактивным излучением, электрич. разрядом, пламенем, УФ-излучением, на нагретой каталитически активной пов-сти. Напр., метод, основанный на измерении разницы сечений (вероятностей) ионизашш газов радиоактивным излучением, используют для анализа таких бинарных смесей, как Н2—N2, Nj— Oj, а также иек-рых углеводородов (МОК ок. 10 мол. %). Метод, основанный на ионизации орг. соед. в водородном пламени, применяют для определения орг. примесей в бинарных газовых смесях и воздухе (МОК ок. 10 мол. %). Метод в к-ром определяемый компонент предварительно переводят в аэрозоль, используют для изменил содержания в воздухе примесей NH3, НС1, HF, NOj, аминов, паров HNO3, карбонилов Ni и Со и др. МОК, как правило, от 10 до 10 мол. %. [c.470]

    Электронозахватный Д. х. представляет собой камеру с двумя электродами, к-рые используют для измерения ионного тока, и радиоизотопным источником для ионизации газов. В качестве источника используют Р-активные (напр., N1) и а-а(стивные (напр., Ри) излучатели, а в качестве газа-носителя N3, Н2, Не. Под влиянием радиоактивного излучения газ ионизируется с образованием электронов. Если приложить к электродам камеры определенный потенциал, возникает заметный фоновый ток. Молекулы анализируемых в-в, обладающие сродством к электро- [c.26]

    ИОНИЗАЦИИ ПОТЕНЦИАЛ, см. Потенциал ионизации. ИОНИЗЙРУЮЩИЕ ИЗЛУЧЕНИЯ, потоки фотонов или частиц, взаимод. к-рых со средой приводит к ионизации ее атомов или молекул. Различают фотонное (электромагнитное) и корпускулярное И.и. К фотонному И.и. относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и др. ядерных р-циях (гл. обр. 7-излучение) и при торможении заряженных частиц в электрич. или магн. поле - тормозное рентгеновское излучение, синхротронное излучение. К корпускулярному И. и. отиосят потоки а- и Р-частиц, ускоренных ионов и электронов, нейтронов, осколков деления тяжелых ядер и др. Заряженные частицы ионизируют атомы или молекулы среды непосредственно при столкновении с ними (первичная ионизация). Если выбиваемые при этом электроны обладают достаточной кинетич. энергией, они также могут ионизировать атомы или молекулы среды при столкновениях (вторичная ионизация) такие электроны наз. 5-электрона.ми. Фотонное излучение может ионизировать среду как непосредственно (прямая ионизация), так и через генерированные в среде электроны (косвенная ионизация) вклад каждого из этих путей ионизации определяется энергией квантов и атомным составом среды. Потоки нейтронов ионизируют среду лишь косвенно, преим. ядрами отдачи. [c.254]

    В качестве источника ионизации можно применять радиоактивное излучение, в частности р-излучение. Однако такого типа детекторы, так же как и детекторы с электрическим разрядом, являются мало чувствительными и поэтому не получили широкого распространения. Исключение составляет аргоновый детектор Дж. Е. Ло-велока [16], оказавшийся самым чувствительным из всех известных в настоящее время детекторов. Дело в том, что атомы аргона обладают одним из самых высоких потенциалов ионизации (11,6 эа). При воздействии на них радиоактивного излучения, например р-из-лучения стронция-90 или прометия-147, возникают возбужденные метастабильные атомы, которые при столкновении с молекулами других веществ могут передать свою избыточную энергию электронам этих молекул. Если при этом окажется, что потенциал их ионизации будет ниже энергии возбуждения атомов аргона, то произойдет ионизация молекул. В результате возникнет ток ионизации, который может оказаться значительно больше тока, вызванного ионизацией самого аргона. Это свойство дает возможность определять весьма малые примеси паров почти всех органических веществ, а также газов, кроме N2, СО2, О2, СН и паров воды. [c.177]

    Как указацо в табл.14.1, все. виды радиоактивных излучений (за исключением нейтронов) производят значительную ионизацию веществ, в которые они попадают. (Именно эта ионизация и является неяосред-ственной причиной разрушения живых тканей иод действием излучений.) Измерение ионизации иод действием излучений наиболее легко производится в газах. [c.213]


Смотреть страницы где упоминается термин Ионизация радиоактивным излучение: [c.117]    [c.20]    [c.599]    [c.459]    [c.506]    [c.502]    [c.603]    [c.339]   
Статическое электричество в химической промышленности изд2 (1977) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Ионизация газа радиоактивными излучениями

Ионизация излучением

Радиоактивные излучения



© 2025 chem21.info Реклама на сайте