Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот в саже

    Продукты горения топлива зависят от его состава и условий сжигания. Однако при горении топлива на электростанциях, в промышленных печах, двигателях внутреннего сгорания и других установках всегда образуются Н2О и СО2. Кроме того, продукты горения содержат, как правило, СО, оксиды серы и азота, сажу, золу, а также азот и непрореагировавший кислород. Соотношение между СО2 и СО в продуктах горения зависит от ряда факторов и прежде всего от соотношения топлива и воздуха. Если подача воздуха недостаточна, то [c.354]


    В другой своей работе Эммет показал, что изотермы адсорбции азота сажей при низкой температуре практически пе меняются после прокалки в вакууме сажи при 900—1200°. Следовательно, при подобной обработке удельная поверхность не меняется. Однако в этой же работе обнаружено, что адсорбция водяного пара при 20—30° после прокалки значительно уменьшается, что может быть объяснено только изменением свойств поверхности (см. ниже). [c.63]

    Табл. 3 подтверждается значительное снижение выбросов, загрязняющих окружающую среду по таким показателям, как окись углерода, а такие вещества, как окись азота, сажа, сернистые соединения, свинец и бензапирен, - вообще отсутствуют. Рис. 1 наглядно подтверждает сравнительную динамику выбросов загрязняющих веществ за наблюдаемый период. [c.26]

    Продукты полного горения топлива состоят из углекислого газа, сернистого газа, паров воды, избыточного кислорода и азота. При неполном горении в продуктах горения могут также присутствовать окись углерода, углеводороды, водород и элементарный углерод — сажа. [c.110]

    На каждые 50 газа образуется примерно 1 кг сажи. Очень целесообразна комбинация производства ацетилена с получением аммиака или циан-амидных продуктов. Необходимый для получения аммиака и.пи цианамида кальция чистый азот может получаться из жидкого воздуха. Освобождающийся при этом кислород может быть использован для получения ацетилена. [c.96]

    Для определения удельной поверхности з обычно применяются изотермы адсорбции паров простых веществ (N2, Аг, Кг) при низких температурах (большие значения величины С). При этом за стандарт принята величина для азота, адсорбированного при —195 °С (78 °К) на графитированной саже, равная 16,2 А . Определив с помощью низкотемпературной адсорбции стандартного пара удельную поверхность адсорбента з, легко далее решить и обратную задачу—найти величину (и для какого-либо другого адсорбата, определив на опыте изотерму адсорбции его пара и найдя величину емкости монослоя а из графика, аналогичного показанному на рис. XVI, 9. [c.454]

    При взаимодействии плазмы с жидкостью, например азота и водорода с жидкими углеводородами, могут быть синтезированы ацетилен и цианистый водород [4]. Для осуществления процесса плазменную струю затопляют в толще жидкого углеводорода. Процесс протекает в газовом пузыре, который образуется вблизи сопла плазмотрона. Температура в зоне реакции зависит от мощности генератора плазмы и теплофизических характеристик плазмообразующего газа. К преимуществам такой организации процесса относят очистку от сажи и тяжелых углеводородов при прохождении пирогаза через толщу углеводородного сырья непосредственную закалку продуктов в слое углеводородов возможность использования некондиционных видов сырья. [c.188]


    Отработанные газы двигателей внутреннего сгорания состоят более чем из 80 компонентов, основные из которых приведены в табл. 8 [317, с. 5 318, с. 5]. Большинство из них (за исключением азота, кислорода, воды и диоксида углерода) в той или иной мере токсичны. При работе карбюраторных двигателей на богатых бензиновых смесях основной токсичный компонент отработанных газов— оксид углерода, доля которого в общей токсичности составляет примерно 95% при работе на бедных смесях главным токсичным компонентом являются оксиды азота, их доля в общей токсичности достигает 90% [317, с. 206]. При работе дизельных двигателей основной вредной примесью являются углистые частицы (сажа), доля которых в общей токсичности составляет 60 — 90 % в зависимости от режима работы двигателя. Помимо общего вредного действия на организм человека сажа опасна еще и тем, что служит переносчиком адсорбируемых на ее поверхности различных канцерогенных веществ, среди которых выделяется 3,4-бензпирен [319, с. 43]  [c.278]

    Кислород Пары воды Диоксид углерода Оксид углерода Оксиды азота Углеводороды Альдегиды Сажа [c.279]

    Процессы селективной очистки масел растворителями используются для удаления полициклических ароматических углеводородов с короткими боковыми цепями, имеющих низкий индекс вязкости, а также смолистых веществ и соединений, содержащих серу, азот, кислород, которые ухудшают эксплуатационные свойства масел. Целевой продукт процесса — рафинат. Экстракт, который является побочным продуктом, может быть использован при производстве сажи, трансмиссионных масел, битума и для других целей. Наибольшее распространение в качестве селективных растворителей в процессах очистки масел получили фенол и фурфурол. Характеристики этих растворителей приведены в табл. 5.11. Фенол превосходит фурфурол по растворяющей способности, но уступает по селективности, [c.290]

    Порядок вычисления состава продуктов реакции зависит от соотношения величин [ lo и [01о. т. с. от возможности окисления всей окиси углерода. Отсутствие сажи в продуктах сгорания возможно даже в сделанных предположениях только при условии, что [ iu < [01 . Если 2 [С] > [0]() > [С]о, из 100 моль исходной смеси образуется следующее число молей конечных компонентов (кроме неизменного 2q моль инертного компонента —азота, аргона и т. д.)  [c.112]

    Для газификации в качестве сырья принят гудрон, а для сжигания - мазут. В предлагаемом способе энергоснабжения выбросы окислов серы в 5 раз меньше. Полученный топливный газ - низкокалорийный, его температура горения на 673-773 К ниже, чем мазута и природного газа, вследствие чего выбросы окислов азота в 2-3 раза меньше. Поскольку горючими компонентами газа газификации являются только 2 выбросы сажи, золы и углеводородов исключаются полностью. [c.135]

    Выход сажи,% на сырье 40,0 Состав сухого дутья, об.% кислород 60,0 азот [c.165]

    Некоторые установки, в особенности те, которые расположены после циклических реакторов риформинга углеводородов, работают с исходными газами, содержащими следы ацетилена и окиси азота. Это приводит к образованию смолы с высоким содержанием углерода, которая откладывается на катализаторе и прекращает доступ газа к каталитической поверхности. Многие заводы решают эту проблему, используя отдельный защитный слой катализатора, который может регенерироваться. На установках высокотемпературного неполного окисления углеводородов иногда получают исходный газ, содержащий частицы сажи, которые могут блокировать поры в высокотемпературном катализаторе конверсии СО. Регенерация катализаторов, блокированных смолой и сажей, возможна только в том случае, если физическая структура таблеток катализатора не пострадала во время образования углерода. Некоторые партии катализаторов Ай-Си-Ай 15-2/4 успешно регенерировались, по крайней мере, четыре раза в течение пробега. [c.126]

    Дизельный автомобиль по сумме приведенных затрат в расчете на одинаковые пробег и работу наносит экологический ущерб в 1,7 раз больше, чем бензиновый автомобиль. Этим уточняются результаты расчета, представленные в табл. 6.4, по которому использование 1 т дизельного топлива наносит ущерб в 2,3 раза больше чем 1 т бензина. Но наряду с уменьшением выбросов СО и [СН], что является положительным фактором дизелизации автомобильного транспорта, использование дизельных двигателей ведет к увеличению выброса оксидов азота и сажи. [c.251]

    Снизить их выбросы можно при использовании газодизельного процесса, позволяющего уменьшить выбросы оксида азота примерно в 1,5 раза и сажи — в 5 раз (см. табл. 6.4). Вместе с тем необходимо осуществление работ по нейтрализации отработавших газов дизельных автомобилей и улавливанию твердых частиц сажи. [c.251]

    Сажа, пыль Диоксид серы Оксиды азота Оксид углерода Суммарные выбросы (% к углю) [c.253]


    Наиболее значительные недостатки сводятся к применению большого количества кислорода, расходованию части сырья в качестве топлива, трудностям переработки получаемых продуктов пиролиза, содержащих кислородные соединения, и другие. Применение воздуха вместо кислорода ведет к сильному разбавлению пирогаза азотом. Концентрация этилена не превышает в нем 16—18% по объему, что удорожает ректификацию. Существенным недостатком является также то, что кислород или воздух и углеводородное сырье приходится нагревать предварительно до смешения в реакторе в отдельных трубчатых печах во избежание взрывов. Кроме того, в процессах окислительного пиролиза не могут перерабатываться тяжелые нефтепродукты из-за чрезмерного саже- и коксообразования. [c.28]

    Сгорание топливовоздушной смеси начинается в конце такта сжатия и заканчивается примерно в середине рабочего хода поршня. Газы, образовавшиеся в процессе сгорания, выбрасываются в атмосферу в такте выпуска. Кроме основных продуктов сгорания бензина — Н О и СО , отработавшие газы содержат оксид углерода, оксиды азота, оксиды серы, низкомолекулярные углеводороды, элементарный углерод (сажу), продукты сгорания различных присадок, например оксиды свинца и галогениды свинца при использовании этилированных бензинов, а также азот и неизрасходованный на сгорание топлива кислород воздуха. Многие из примесей к основным продуктам сгорания являются токсичными соединениями, загрязняющими окружающую среду. Содержание токсичных продуктов в отработавших газах в значительной степени зависит от химического состава топлива. [c.16]

    В составе отработавших газов преобладают бензиновых двигателей -СО, углеводороды и окислы азота, дизельных двигателей - окислы азота, углеводороды, сажа, оксиды серы и в относительно меньшем количестве по сравнению с бензиновыми двигателями СО. [c.100]

    Но и эти опаснейшие экологические последствия повсеместного и не всегда оправданного применения радиоактивных веществ не идут ни в какое сравнение с катастрофическими последствиями, которые имели бы военное использование современного ядерного оружия. Так, при ядерном ударе мощностью несколько тысяч мегатонн может образоваться зона с суммарными дозами излучения более 1—4 Зв (100—400 бэр) почти на всей территории Европы и средней части Северной Америки. Массовые пожары, возникающие непосредственно после ядерного взрыва, вьщелили бы в атмосферу огромные количества оксидов углерода (IV) и азота, сажи и других аэрозольных частиц, что привело бы к снижению интенсивности солнечного излучения и [c.181]

    Наиболее надежен метод определения площади поверхности I г сажи (удельной поверхности), разработанный Брунауэром, Эмметом и Теллером (метод БЭТ) основанный на адсорбции азота сажей. Некоторые фирмы используют этот метод в качестве контрольного. Удельную поверхность можно также подсчитать по электронномикроскопическим снимкам, рассматривая частицы сажи как гладкие сферы. Если значения, полученные при помощи метода БЭТ, превышают значения, рассчитанные по электронным микрофотографиям, то частицы сажи считаются пористыми отношение этих двух величин называется индексом пористости . В соответствии с этим показателем пористыми (в некоторой степени) следует считать канальные сажи, применяемые в производстве резины, и печные сажи типа F и S Pe. [c.270]

    В топках котлов и печей со встречной двухсторонней компоновкой горелок образование окислов азота, сажи и многоядерных полициклических углеводородов происходит в сложных условиях взаимодействия смежных факелов. При встречноударной компоновке горелок ударение струй происходит в центре топки, при этом за счет турбулизации хвостовой части факелов интенсифицируются процессы выгорания сажи и углеводородов, устраняется удар пламени об экранные поверхности и повышается стабилизация горения. [c.178]

    Хлорнитросоединения, которые получают из низкомолекулярных питропарафинов, постепенно привлекают все больший интерес. Так, например, 1-хлор-1-нитропропан является превосходным средством для предотвращения желатинизации так называемых резиновых (каучуковых) клеев (смеси сырой невулканизированной резины, серы и масел), которые наносят для получения покрытий (гуммирования) и затем подвергают отвержению нагреванием [203]. Хлорпитропарафины можно превращать путем обработки растворами полисульфидов натрия или аммония в полимеры, которые содержат много серы и мало азота. Та- кие полимеры могут быть совмещены с различными компонентами, применяемыми в резиновой промышленности, как, например, сера, окись цинка, сажа и ускорители вулканизации, для получения резиноподобных продуктов [204]. 1,1-дихлор-1-нитроэтан является практически таким же инсектицидом, как хлорпикрин, но диффундирует он значительно быстрее. Так как он не вызывает слезотечения, то с ним проще обращаться, чем с хлорпикрином. К товарному продукту, известному в США под названием итайд , примешивают в качестве предупреждающего опасность средства незначительные количества хлорпикрина. [c.341]

    В сентябре 1972 г. на IV сессии Верховного Совета СССР принято постановление О мерах по дальнейшему улучшению охраны природы и рациональному использованию природных ресурсов . В соответствии с этим постановлением в химической промышленности осуществлены крупные организационно-технические мероприятия, направленные на сокращение вредных газовых выбросов. Однако на ряде предприятий в атмосферу все еще выбрасывается значительное количество окислов азота, сернистого и серного ангидрида, сероводорода, сероуглерода, хлора и его производных, окиси углерода, карбидной пыли, сажи и других вредных газов и пылей. Поэтому при дальнейшем увеличении мощностей химических и нефтехимических производств следует разрабатывать технологические процессы с комплексной переработкой сырья, внедрять более эффективные методы очистки газовых выбросов, создавать долговечное герметичное оборудование. Все это позволит уменьшить вероятность возникновения аварий и создать безопасные и здоровые условия труда в химической и нефтехимической промышленности, а также повысить культуру производства. [c.12]

    Конечные продукты зависят от полноты сгорания. Это обычные топочные газы, смесь азота, водяных паров, углекислого газа с небольшой примесью окиси углерода. Некоторая часть несгоревшего углерода (несущего адсорбированные смолы и углеводороды) может появиться в виде дыма и сажи. Водород, количество которого в топливах достигает 12%, сгорая, дает воду, которая уносится в виде водяных наров, так что теплота испарения ее теряется. Эта потеря составляет разницу между высшей и низшей теплотворной способностью топлива. Сера сгорает до сернистого газа. [c.472]

    Загрязненные сточные воды в производстве ацетилена, получаемого методами термоокислительного пиролиза или электрокрекинга метана, образуются при мокрых способах очистки газа от сажи с применением орошаемых водой скрубберов, пенных аппаратов или мокропленочных электрофильтров. Эти сточные воды содержат, кроме солей жесткости, сажу, фенол, нафталин, многоатомные спирты и различные растворенные газы. В сточных водах производства ацетилена методом электрокрекинга может находиться также синильная кислота, если природный газ, используемый для получения ацетилена, содержит азот. [c.136]

    Предприятия нефтеперерабатывающей промышленности выбрасывают в атмосферу значительные количества газов и пыли. По данным [72], по группе предприятий Башкирской АССР 63 /о составляют выбросы паров и газов в атмосферу, а 36%—выбросы в виде продуктов сгорания углеводородов, содержащие оксид углерода, диоксид серы и оксиды азота. При хранении и переработке сернистых нефтей вместе с углеводородами выбрасывается и сероводород. Заводы технического углерода выбрасывают в воздух мелкодисперсную сажу. Пыль выделяется в процессах, связанных с применением твердых катализаторов, при размоле, просеивании, транспортировании пылящих веществ и других операциях. [c.297]

    Предприятия химической промышленности выбрасывают в атмосферу в значительных количествах вредные газы и пыли. К их числу относятся сернистый ангидрид, окислы азота, туман серной кислоты, фтор, хлор, сероводород, окись углерода, пыли минеральных удобрений—фосфоритная и суперфосфатная, сажа и многие другие вещества. Большинство отходящих газов и пылей приносит ущерб народному хозяйству. Некоторые из них агрессивно действуют на строительные конструкции, разрушая бетон, железные крыши, фермы мостов, мачты линий электропередач. Пыль и сажа, осаж-даясь на изоляторах, могут вызвать аварии на высоковольтных линиях, попадаЯТ машины и механизмы, они ускоряют изяоС трущихся частей, понижают прозрач- [c.255]

    Оксид углерода, оксиды азота и сероводород —сильные яды, сернистый ангидрид, находясь в воздухе окисляется до SO3 и при соединении с атмосферной водой образует серную кислоту, которая наносит вред растениям, подкисляет почву, ускоряет процесс коррозии металлов, разрушает каменную облн цовку зданий. Пыль и сажа, помимо раздражающего действия на слизистые оболочки и кожные покровы, снижают прозрачность атмосферы, в том числе для ультрафиолетовой радиации обладающей бактерицидными свойствами, а также препятствуют самоочищени1р атмосферы. [c.204]

    Одним практическим следствием такой зависимости является то, что при увеличении размеров камеры сгорания или печи в условиях несветяшегося горения можно ожидать некоторого увеличения плотности радиационного потока на стенке. Кроме того, области горячего газа, находящиеся далеко от степки, могут радиационно охлаждаться холодной стенкой вследствие того, что оптическая глубина в крыльях полос невелика и имеется заметное увеличение ш/ в горячих областях. В отличие от этого в условиях горения с болыпим количеством сажи при увеличении размеров плотность теплового потока на стенку может падать, а области пламени, удаленные от стенки, не могут видеть стенку и, таким образом, не подвержены радиационному охлаждению. Это последнее обстоятельство может привести к увеличению образования загрязняющего компонента — окиси азота. [c.510]

    Известно, что водомазутные эмульсии ссодержанием воды 10-30% довольно широко используют в качестве топлива. В эмульсиях этого типа вода в виде мельчайших капелек равномерно распределена по всей массе мазута. При этом, за счет таклазываемого эффекта микровзрыва капель воды во время сжигания эмульсии, повышается полнота сгорания топлива, что способствует снижению концентрации токсичных выбросов (оксидов азота, окиси углерода, сажи, бенз(а)пирена и других полициклических ароматических углеводородов) до 30-40%. [c.80]

    Процесс осуществлялся в вертикальном реакторе,футерованном специальными огнеупорными материалами, под давлением 1,0 МПа. Распыление гудрона проводилось пневматической форсункой. Температура гудрона составляла 80-100°С, теипература дутья - 300-400°С. Температура в реакторе регулировалась изменением расхода кислрро-да. Каждый опыт продолжался до б ч. Приборами КИП и А регулировались температура гудрона, пара, азота, кислорода, измерялись расходы реагентов и температура газа в реакторе. Для анализа газа и состава дутья применялся хроматограф ЛЖ-72. Сажа, получ [е-иая в процессе газификации гудрона, удалялась из газа проиывной водой. После каждого опыта определялся выход сажи и водяного конденсата. В табл. 1-3 приведен материальный баланс 2-х серий опытов, в которых исследовалось влияние водяного пара на выход газа. Из рис. I и 2 следует, что с увеличениеи расхода пара на процесс газификации увеличивается суммарный выход газа на 24%, при этой в газе уменьшается содержание окиси углерода с 50 об.% (при отсутствии водяного пара в дутье) до 38-40 об.% при расходе пара I кг/кг гудрона содержание водорода возрастает с 20-22 об. до 32-35 об.%,соответственно. [c.121]

    Углероды разных видов могут на границе твердое тело — газ физически и химически адсорбировать и десорбировать газовые и жидкие продукты. Физическая адсорбция газов (азот, аргон, 50г) происходит на базисных плоскостях кристаллита углерода теплота адсорбции 8,4—33,6 кДж/моль. В работе [88] утверждается, что адсорбция ЫНз, Нг5, 80г и СОг при низких температурах па базисных плоскостях графитированных саж осуществляется с таким же тепловым эффектом, как и адсорбция инертных газов, т. е. происходит преимущественно физическая адсорбция. Химическая адсорбция осуществляется при взаимодействии НгЗ, О2 и других активных газов с поверхностью углерода п]зи более высоких температурах. Так, установлено [58], что в интервале от —196 до —73 °С поверхность свежеизмельченного графита адсорбирует кислород преимущественно физически при более высоких температурах происходит химическая адсорбция. Как известно, на поверхности неупорядоченного углерода имеются разорва) -пые связи (свободные радикалы), которые могут присоединять кислород, что сопровождается образованием комплексов. [c.57]

    На возникновение и рост зародышей сажи значительное влиянне оказывает температура и среда, в которой формируются > <ид-кие частицы. При высоких температурах возникает боль(иое количество зародышей, рост которых контролируется подачей углево-дородного сырья. Одновременно интенсифицируются процессы взаимодействия сажевых частиц с реакционноспособными газами, ириводящ,ие к образованию бошее дисперсных сажевых частиц. Добавление в зону реакции ингибиторов (пропилена, окиси азота) или инициаторов (окиси этилена) влияет на кинетику образования сал<и, что подтверждает радикально-цепной механизм процесса. [c.169]

    Смеси водорода и окиси углерода, полученные из нефти или каменного угля, не являются единственным источником водорода для синтеза аммиака. Там, где имеется дешевая электроэнергия, водород можно получать электролитическим методом. Используют также водород, образующийся в качестве побочного продукта при каталитическом риформинге или при крекинге метана до термакса (термоатомной сажи). В этих случаях необходимый азот обычно получают (за немногими исключениями) с установок жидкого воздуха. [c.52]

    Взаимодействие фтора с бензолом протекает очень бурно—с воспламенением и полным разрушением кольца в результате образуются сажа, фтористый водород, фториды и фторсодержаш,ие смолы. Если разбавить фтор азотом и вести реакцию при —7°, она протекает спокойно, но и в этом случае фторбензол или полифториды бензола не получаются, а образуются лишь смолы. Аналогично ведут себя с фтором гомологи и производные бензола. В последние годы практическое значение приобрело получение перфторпроизвод-ных гексагидроксилолов FJg( Fз)2 прямым фторированием ксилола. [c.774]

    Для получения более дисперсной сажи повышают температуру и сокращают время пребывания частиц сажи в зоне реакции. Предотвратить рост сажевых частиц можно также, понижая концентрацию разлагаемого углеводорода. Это достигается разбавлением углеводорода азотом или водородом при получении термических саж из природного газа. Скорость процесса резко возрастает, если в исходном сырье содержатся многоядер-ные углеводороды. Присутствие в исходном углеводороде до 1 об.% кислорода или оксида этилена также повышает скорость образования сажевых частиц. Наоборот, добавление к сырью пропилена или оксида азота замедляет процесс. [c.39]

    Токсичность продуктов сгораннм топлив (габл. 16 ) гораздо выше, чем жидких и газообразных топлив. Продукты сгорания содержат следующие наиболее токсичные соединения окись углерода (угарный газ, СО ), оксиды азота КхО (N0, ЫОг, N2 О4, N2 05 ), сажа (мелкодисперсный углерод), оксиды серы (ЗОг, 80з), соединения свинца РЬО, РЬО ), бензпирен. [c.100]


Смотреть страницы где упоминается термин Азот в саже: [c.265]    [c.492]    [c.431]    [c.27]    [c.103]    [c.242]    [c.332]    [c.43]    [c.198]    [c.223]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Азот анализ и на процесс получения сажи

Азот в газовой саже

Азот окклюдирование его газовой саже



© 2025 chem21.info Реклама на сайте