Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак, алкилирование его с олефинами

    Для алкилирования аммиака или аминов по атому азота в качестве алкилирующих агентов чаще всего применяют хлорпроизводные и спирты. В отличие от многих реакций алкилирования, использование для этой цели олефинов ведет лишь к незначительному образованию аминов, а главными продуктами являются нитрилы. [c.272]

    При необходимости охлаждения до низких температур (ниже 10 — 15 °С) применяют специальные хладагенты — испаряющийся аммиак, пропан, этан и другие сжиженные газы. В нефтепереработке подобные охлаждающие агенты используются при депарафинизации масел, низкотемпературном сернокислотном алкилировании изобутана олефинами, при производстве некоторых высоковязких присадок и др. При испарении сжиженных газов скрытая теплота, необходимая для превращения жидкости в пар, отнимается от охлаждаемого потока. Образующиеся пары хладагента подвергаются компрессии или абсорбции, вновь сжижаются и возвращаются в процесс. [c.598]


    Сита типа ЗА вследствие малого размера пор способны адсорбировать на внутренней активной поверхности только такие соединения, как вода, аммиак, метанол, окись углерода. Важное значение приобрели они для осушки низших олефинов — сырья для процесса алкилирования, пропилена, бутиленов, бутадиена. Осушка может производиться в газовой или жидкой фазе. Вследствие простоты схемы, высокой адсорбционной емкости и низкого остаточного содержания воды после регенерации достигается значительная экономия капиталовложений и эксплуатационных расходов. [c.311]

    Алкилирование протекает с положительным тепловым эффектом (теплота реакции 1172 кДж), и для отвода тепла реакции применяют хладагенты - аммиак или пропаны. Температурные пределы промышленного сернокислотного алкилирования колеблются от О до 10 °С. В случае остановки холодильного компрессора температура в реакторе резко повышается, что вызывает усиление полимеризации олефинов. В этом случае необходимо прекратить подачу олефинов, продолжать подачу и циркуляцию изобутана, поддерживать требуемую концентрацию кислоты путем добавления свежей кислоты и вывода из системы максимально возможного [c.79]

    Алкилирование хлорбензола олефинами на продукт алкилирования действуют аммиаком, например, в смесь хлорбензола и хлористого алки [c.416]

    Б. Алкилирование аминов и аммиака олефинами [c.156]

    Простой эфир также способен алкилировать аммиак и амины, но образование олефина является нежелательным побочным процессом. Его можно в значительной степени подавить, применяя избыток аммиака при этом ускоряется основная реакция алкилирования и снижается скорость дегидратации. Таким путем удается успешно синтезировать амины даже из высших первичных спиртов, еще более склонных к дегидратации. [c.266]

    Для процесса применяют аппараты двух типов, отличающиеся способом отвода выделяющегося тепла — при помощи внутреннего охлаждения жидким аммиаком (или пропаном) или за счет испарения избыточного изобутана. В первом случае в алкилаторе, снабженном мощной мешалкой, имеются охлаждающие трубы, в которых теплоноситель испаряется (рис. 73, а) (стр. 356). Его пары направляют затем на холодильную установку, где они снова превращаются в жидкость. Более эффективен метод теплоотвода за счет испарения избыточного изобутана, что облегчает регулирование температуры. Один из интересных типов алкилаторов, работающих по этому принципу, изображен на рис. 75 (ап. 1). В нем реакционное пространство разделено перегородками на несколько секций с мешалками (каскадов). Бутилен подводится отдельно в каждую секцию, вследствие чего концентрация олефина в секциях очень мала, и это позволяет подавить побочную реакцию полимеризации. Серная кислота и изобутан поступают в первую секцию слева, и эмульсия перетекает через вертикальные перегородки из одной секции в другую. Вторая справа секция служит сепаратором, в котором кислота отделяется от углеводородов и возвращается на алкилирование. Через последнюю перегородку перетекает смесь углеводородов, поступающая на дальнейшую переработку. [c.369]


    Для алкилирования аммиака или аминов по атому азота в качестве алкилирующих агентов чаще всего применяют хлорпроизводные и спирты. В отличие от многих реакций алкилирования использование для этой цели олефинов ведет лишь к незначитель- [c.376]

    Синтез аминов из спиртов и аммиака в присутствии водорода на катализаторах дегидро-гидрирующего типа проводится в паровой фазе при 200—250 °С и 10—20 ат. Приведенные условия мягче, чем при алкилировании аммиака спиртами, причем процесс не сопровождается побочным образованием олефинов. В связи с этим он может быть более предпочтительным для синтеза аминов, особенно из высших и вторичных спиртов. [c.708]

    Г оэтому процесс проводят со смесью паров спирта, аммиака и во-дэрода. В зависимости от мольного соотношения спирта и аммиака получаются смеси разного состава, причем кинетически данный процесс более выгоден для образования первичного амина, чем а/[килирование аммиака спиртами. Синтез аминов из спиртов и аммиака в присутствии водорода на катализаторах дегидро-гидри-рующего типа проводят в газовой фазе при 200—250 °С и 1—2 МПа. Приведенные условия мягче, чем при алкилировании аммиака С и1ртами, причем процесс не сопровождается побочным образованием олефинов. В связи с этим ои может быть более предпочтительным для синтеза аминов, особенно из высших и вторичных сляртов. [c.512]

    Первоначально основным методом получения 2,6-диалкилфенолов являлся гидрогенолиз соответствующих 4-галогенсодержащих фенолов . Например, 2,6-ди-г/7ет-бутилфенол впервые был получен обработкой натрием в жидком аммиаке 4-хлор-2,6-ди-т рег-бутилфенола, синтезированного алкилированием 4-хлорфенола изобутиленом в присутствии кислых катализаторов. Из-за много-стадийности и незначительных выходов этот метод не получил широкого практического развития. Поэтому перед исследователями многих стран стояла задача создания прямых методов орто-алкилирования фенола. Практически она была решена в 1956—1957 гг., когда был найден способ алкилирования фенола олефинами под давлением в присутствии фенолята алюминия в качестве катализатора 85-97 [c.37]

    Благодаря структурным особенностям, высокой термической и химической стабильности цеолиты нашли широкое применение в катализе при проведении разнообразных процессов. Исследованы каталитические свойства синтетических цеолитов в процессах крекинга н-парафинов, полимеризации олефинов, изомеризации двойной связи в олефинах, дегидратации спиртов, гидратации окиси этилена, в реакциях алкилирования, деалкилирования, окисления, синтеза аммиака, дегидрирования и др. [c.156]

    Крупнотоннажные химические процессы обычно осуществляют в потоке, т. е. в струе газа, проходящей через реактор с заданной температурой. Последний может быть пустым или со слоем зерненого катализатора. Примерами реакций, осуществляемых в потоке в широких технических масштабах, являются крекинг нефтепродуктов, гидрокрекинг, каталитическое алкилирование, полимеризация, гидро- и дегидрогенизация углеводородов, дегидрогенизация спиртов, гидратация олефинов, галогенирование, нитрование окислами азота, синтез аммиака, контактный способ получения серной кислоты, каталитический риформинг и т. п. [c.54]

    В отличие от многих реакций алкилирования взаимодействие олефинов с аммиаком не приводит к преимущественному образованию аминов, главными продуктами реакции являются нитрилы  [c.278]

    Указанные катализаторы являются также и дегидратирующими, поэтому при алкилировании аммиака высшими спиртами в продуктах реакции присутствует большое количество олефинов и простых эфиров. Простой эфир способен алкилировать аммиак и амины, а подавить реакцию дегидратации спиртов можно, применяя избыток аммиака. [c.280]

    Под термином карбонилирование подразумеваются главным образом реакции окиси углерода с ацетиленом (или производными ацетилена) и олефинами в присутствии соединений, содержащих активные атомы водорода, как вода, спирты, меркаптаны, амины и карбоновые кислоты. В результате этой реакции образуются соответствующие карбоновые кислоты и их производные. К этой группе реакций относятся также синтез спиртов из олефинов, окиси уг.терода и воды, синтез ароматических соединений типа гидрохинона — из ацетилена, окиси углерода и воды и реакции алкилирования аммиака и аминов олефинами, окисью углерода и водой. [c.215]

    В изучении этих химических процессов или, иными словами, в развитии химической технологии отдельных веществ и продуктов, например, синтетического аммиака, каучуков, пластических масс, черных, цветных и редких металлов, стекла, цемента и т. п., достигнуты огромные успехи. Эти успехи обусловили технический прогресс соответствующих отраслей промышленности. Однако научная классификация химических процессов продолжает оставаться одной из важных задач химической технологии как науки. По аналогии с классификацией физических и физикохимических процессов химической технологии делаются попытки классифицировать промышленные химические реакции по основным химическим процессам . Так, предлагалась следующая классификация химических процессов обменное разложение и солеобразование (минеральные удобрения и соли), окисление (серная кислота, азотная кислота, органические кислородные соединения и др.), гидрирование (аммиак, метанол и другие спирты, аминосоединения ароматического ряда, получаемые гидрированием нитросоединений, и т. п.), аминирование (мочевина, аминосоединения жирного и ароматического рядов), хлорирование (химические средства защиты растений), нитрование (взрывчатые вещества), сульфирование (синтетические моющие вещества), электрохимические процессы (электролиз водных растворов, электролиз в расплавленных средах, электрохимическое окисление и восстановление), процессы высокотемпературного и каталитического крекинга и пиролиза жидкостей и газов (нефтепереработка, получение олефинов из природных газов и др.), процессы полимеризации и поликонденсации (получение пластических масс, синтетических каучуков, химических волокон), процессы высокотемпературной переработки твердых тел (коксование углей, производство карбида кальция, стекла, цемента, сернистого натрия), алкилирование и арилирование и т. д. [c.138]


    Превращение олефинов с окисью углерода, водой и аммиаком или аминами в моно- или многократно алкилированные амины. [c.239]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    СНз)2СН— H2NO2.64O. 1-Нитропропан. 641. (Н0СНг)зСК02. 652. Методом Габриеля из галогенопроизводного и фталимида калия. См. [3], I, стр. 535, 536. 653. О восстановительном алкилировании аммиака см. З], 1, стр. 537. 657. О получении аминов из амидов кислот перегруппировкой Гофмана см. [3], I, стр. 793, 794. 658. По методу (а) образуется олефин. 663. Отсутствие оптической активности обусловлено непрерывной осцилляцией молекулы амина. См. [3], I, стр. 561 [4], И, стр. 10—12. 666. Активность водорода при а-углеродном атоме нитросоединений Обусловлена сильным —/-эффектом нитрогруппы. 669. Метод ИК-спектроскопии. См. [9], стр. 42—44. 676. Расщепление четвертичных аммониевых оснований происходит по механизму Е2 с образованием третичного амина и олефина [З-элими-нированию предпочтительно подвергается группа, способная образовать олефин с наименьшим числом алкильных групп у двойной связи (правило Гофмана)  [c.196]

    Алкилирующне средства галогеналкилы, спирты, диалкилсуль-фаты, диазометан, олефины, оксиды олефинов. Алкилирование аммиака и аминов. Дегидратация спиртов. Особенности AernflpaTaliHH гликолей. Действие оксида этилена на амины, спирты, карбоновые кислоты, фенолы. [c.88]

    Различи ,[е реакции галоидных алкилов 869. Разложение галоидных алкилов с образованием олефинов 870. Изомеризация галоидных алкилов 874, Реакции моиохлорированпых парафинов и циклопарафинов с аммиаком и аминами 875. Получение эфиров из монохлорированных парафинов 877. Алкилирование ядра ароматических соединений с помощью галоидных алкилов 878. Реакции двойного обмена солей неорганических кислот с галоидными алкилами 879. Реакции взаимодействия алкилхлоридов с магнием 881. Другие реакции хлористых алкилов и мо-цохлориропанных циклопарафинов 883. Реакции дпхлорзамегценных парафинов и циклопарафинов 884. [c.640]

    См. обзор [425]. В реакции Бамфорда — Стнвенса [схема (117)] тозилгидразон алифатического или циклического кетона обрабатывают сильным основанием с образованием дназосоеди нения (155). Его дальнейшая судьба зависит от условий (протон иых или апротонных) и от природы основания. Он может терять азот с образованием карбена, приобретать протон с образованием иона карбения или депротонироваться, давая винильный анион. Продуктами часто являются алкены, но важное значение могут иметь и скелетные перегруппировки [36, 425]. В другой реакции [ схема (118)] кетон превращают в енолят-ион (156), который реагирует с диэтилхлорфосфатом с образованием енолфосфата. Литий в аммиаке или диэтиламине восстанавливает последний в олефин (157) [426]. В опубликованной работе в качестве основания для получения енолята использован гидрид натрия, но другие методы (см. разд. 5.2.4) также должны быть пригодны, в том числе и для проведения региоспецифических реакций. Еноляты были приготовлены также из а,Р-ненасыщенных кетонов (158) [схема (119)] из них можно получать олефины, включая или не включая стадию алкилирования [426, 427]. [c.661]

    Мононитрилы (табл. XIV) и алкилиденацетонитрилы (табл. XV). Ацетонитрил, а также моно- и дизамещенные ацетонитрилы были алкилированы в присутствии амида натрия в инертном растворителе. Было показано, что для алкилировании фенилацетонитрила и дифенилацетонитрила [195] с успехом MOHIHO применять в качестве основания амид калия, а в качестве растворителя — смесь жидкого аммиака и эфира. Были применены следующие алкилирующие агенты галоидалкилы и галоидаллилы, дигалоидозамещенные алканы, хлорпиридины, хлорхинолины, окиси олефинов, диалкилсульфаты и алкилсульфонаты. В некоторых случаях повышение температуры реакции [c.152]


Смотреть страницы где упоминается термин Аммиак, алкилирование его с олефинами: [c.86]    [c.86]    [c.549]    [c.196]    [c.274]    [c.141]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.618 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилирование аминов и аммиака олефинами

Аммиак алкилирование

Аммиак, алкилирование его олефинов и многоатомных спиртов

Олефины аммиака



© 2025 chem21.info Реклама на сайте