Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструкция при поликонденсации

    Согласно представлениям, развитым В. В. Коршаком [112— 117], процесс коксования можно рассматривать еще и как неравновесную поликонденсацию, которая протекает с деструкцией и при которой наряду с высокомолекулярными образуются еще и низкомолекулярные продукты. [c.46]

    Энергия активации Е при коксовании масел была 50 000, смол 32 200 и асфальтенов 25 800 кал моль. Снижение значений Е указывает на уменьшение роли реакций деструкции и развитие процессов поликонденсации и глубокого уплотнения при переходе от масел к смолам и асфальтенам. [c.71]


    В зависимости от способа проведения и строения исходных мономеров реакция поликонденсации может идти как равновесная и как необратимая. Необратимая поликонденсация обычно протекает с большой скоростью. Обратимая поликонденсация осуществляется, как правило, с малой скоростью. Так, из диаминов и дикарбоновых кислот образуются полиамиды. Процесс обратимой поликонденсации, как и обычная конденсация, характеризуется константой равновесия К и константами скорости прямой и обратной реакций. В момент равновесия скорость образования высокомолекулярного соединения равна скорости его деструкции. Если обе реакции второго порядка и если условно принять, что функциональные группы участвуют только в реакциях поликонденсации и не участвуют в побочных процессах, то фактическая скорость и образования продукта поликонденсации за промежуток временит будет равна [c.197]

    Существенное отличие деструктивной гидрогенизации от остальных методов термической деструкции углей состоит в том, что при ней реакции поликонденсации протекают в значительно более слабой степени из-за насыщения свободных связей водородом. [c.182]

    Так как процесс гидрогенизации протекает в избытке водорода, то реакции полимеризации и поликонденсации первичных продуктов деструкции подавляются и при достаточно вы- [c.185]

    Вместе с тем при рассмотрении кинетики полимеризации и поликонденсации, а также кинетики деструкции полимеров возникают некоторые специфические проблемы. В первую очередь это вопрос о среднем молекулярном весе образующегося полимера, который является одной из важнейших характеристик полимера. Кроме того, поскольку в любом процессе образования или деструкции полимера получается сложная смесь полимерных молекул разной длины, то существенным является вопрос о количественном соотношении молекул различной длины. Обычно это соотношение задают как молярную ( и ) или весовую (7,) долю молекул полимера с числом звеньев. г  [c.354]

    Поскольку все важнейшие природные полимеры получаются путем поликонденсации, то деструкция, представляющая собой обратный процесс, идет путем,гидролиза этих полимеров. [c.372]

    Коксование тяжелых нефтяных остатков можно рассматривать как форму глубокого термического крекинга, который осуществляется обычно при температурах от 440 до 560°С и давлении от атмосферного до 7 МПа. При этом получаются газообразные и жидкие продукты реакций деструкции, а также твердый продукт реакций поликонденсации и глубокого уплотнения — кокс (углеродистый остаток). [c.201]


    Поскольку реакция поликонденсации является обратимым процессом, в момент равновесия скорость образования полимера на каждой ступени равна скорости его деструкции. Чтобы сдви путь реакцию в сторону образования более высокомолекулярны продуктов, необходимо удалять низкомолекулярные вещества, выделяющиеся при реакции. [c.163]

    Удаление побочных продуктов поликопденсации усложняется 110 мере увеличения молекулярного веса полимера и, следовательно, повышения вязкости реакционной среды. Поэтому в большинстве случаев процесс поликонденсации связан с необходимостью постепенного повышения температуры реакционной смеси, что позволяет несколько уменьшить ее вязкость и увеличить скорость диффузии низкомолекулярных веществ к поверхности раздела фаз. Если же дальнейшее повышение температуры реакционной смеси приводит к деструкции исходных веществ или промежуточных продуктов поликонденсации (полимеров), для ускорения отвода низкомолекулярных побочных продуктов поли- [c.164]

    Необходимость применения высокой температуры в процессе поликонденсации приводит к частичной деструкции продуктов реакции, которая может вызвать возникновение новых функцио- [c.166]

    В процессе коксообразования на катализаторах оксидного типа при окислительной конверсии тяжелого нефтяного сырья протекают реакции окисления, дегидрирования, деалкилирования, деструкции, полимеризации и поликонденсации асфальто-смолистых веществ, причем окислительное консекутивное прев >ащение отложений приводит к более глубокой химической конверсии, чем термическое превращение [9]. Установлено селективное влияние железоокисных катализаторов на процесс выгорания основных элементов коксовых отложений (рис. 5). [c.205]

    Учитывая сказанное выше, можно сделать вывод, что эффективность приложения нагрузки при карбонизации, очевидно, связана не с изменением характера процессов деструкции и поликонденсации, а с изменением реологических свойств фенолформальдегидной смолы под давлением и, как следствие этого, с появлением возможностей для ориентации образующихся ароматических макромолекул. [c.193]

    Улучшение графитируемости ФФС при карбонизации под нагрузкой, очевидно, связано не с изменением характера процессов деструкции и поликонденсации, а с изменением реологических свойств [c.268]

    При образовании асфальтенов решающую роль играют процессы деструкции и поликонденсации по консекутивному механизму. По иому иа- [c.27]

    Прекращение роста и обрыв цепи. Вторая характерная особенность реакции поликонденсации — ее обратимый характер. При достижении состояния равновесия скорость образования полимера на каждой стадии взаимодействия мономеров равна скорости его разрушения (деструкции). Для получения полимеров с большой молекулярной массой необходимо нарушать это равновесие, удаляя выделяющиеся в процессе поликонденсации низкомолекулярные продукты. Для этого или повышают температуру реакционной среды, или процесс ведут при пониженном давлении. Первое необходимо для понижения вязкости реакционной среды, которая возрастает по мере течения реакции поликонденсации, а к снижению давления в реакторе прибегают, чтобы высокая температура не разрушала полимер. Таким образом, молекулярная масса полимера и [c.403]

    Деструкция по закону случая. Обычно по закону случая протекает деструкция полимеров, полученных поликонденсацией или ступенчатой полимеризацией. Деструкция молекулы, состоящей из п мономерных звеньев, происходит в результате разрыва одной из п 1 равноценных связей с константой скорости к. [c.239]

    Основными факторами ограничения молекулярной массы при линейной равновесной поликонденсации являются обратимость основной реакции, а также деструкция образовавшихся макромолекул в результате их побочных реакций с низкомолекулярными веществами. [c.35]

    Процесс проводят обычно при 200—400 °С. Во избежание окисления мономеров и термоокислительной деструкции полимера поликонденсацию вначале проводят в токе инертного газа, а затем для удаления побочных продуктов реакции — под вакуумом. Достоинствами способа поликонденсации в расплаве являются возможность применения мономеров с пониженной реакционной способностью, высокий выход полимера и его высокая степень чистоты, сравнительная простота технологической схемы и возможность непосредственного использования полученного расплава полимера для формования волокон и пленок. [c.61]

    При поликонденсации в растворе мономеры находятся в растворенном состоянии. Преимуществом способа поликондеисации в растворе является возможность осуществления процесса в относительно мягких условиях, что особенно существенно при синтезе высокоплавких полимеров, когда высокая температура реакции в расплаве может вызвать деструкцию мономеров и полимера. [c.61]

    Ступенчатые реакции синтеза полимеров осуществляются чаще всего в расплаве мономеров нрн температурах выше 200°С. Иногда следует вести реакцию в атмосфере инертных газов, чтобы исключить деструкцию и другие побочные процессы. В случае поликонденсации в конце процесса производится вакуумирование системы для удаления выделяющегося низкомолекулярного продукта. Полученную массу полимера измельчают для последующей переработки полимера в изделия. [c.84]


    Монофункциональные соединения, присутствующие в реакционной среде, взаимодействуют с промежуточными продуктами, образуя нереакционноспособные соединения. Это приводит к обрыву цепи, поэтому исходные мономеры должны быть очищены от монофункциональных соединений. Монофункциональные соединения могут образоваться в ходе реакции из-за термической или окислительной деструкции промежуточных соединений. Это приводит к остановке реакции поликонденсации и уменьшению молекулярной массы полимера. [c.356]

    Как правило, термообработка углеродсодержащих материалов сопровождается параллельным и одновременным процессом деструкции, поликонденсации и полимеризации. При этом направленность этих процессов и их относительная роль в изменении природы вещества и форм1фовании структуры неактивированных углей зависит от многих факторов, основными из кото- [c.518]

    В первой зоне (верхней части реактора) в прямотоке смешивается различными способами сырье с теплоносителем. В этой зоне протекают в основном процессы, наиболее напряженные в энергетическом отношении испарение и деструкция сырья, полимеризация и поликонденсация с глубокими 4>ормами уялот- нения до карбоидных систем. В этой зоне образуется около 80—90% всех газовых и дистиллятных продуктов реакций. Гра- нулы теплоносителя покрываются слоем вновь образовавшепрся кокса (вернее, коксо-битуминозной смеси). Частицы способны слипаться и прилипать к стенкам реакторного устройства.  [c.108]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    По представлениям В. В. Коршака [28], процесс коксования можно рассматривать как неравновесную поликонденсацию с частичной деструкцией, в результате которой, кроме высокомолекулярных соединений, образуются также низкомолекулярные продукты. Хотя пока еще нет полной ясности в химизме процессов коксования высокомолекулярных соединений нефти и в зависимости направления и г.тгубины протекания реакций от химической природы сырья и температуры процесса, но уже накоплен обширный и добротный экспериментальный материал, характеризующий этот процесс [24, 29, 39]. [c.171]

    К реакциям различных классов в жидкой фазе, которые сопровождаются слабой хемилюминесценцией в видимой области, относятся термический распад перекисей, гидроперекисей, азосоедние-ннй окисление кислородом углеводородов и других соединений конденсация хлорапгидридов кислот с аминами, поликонденсация (например, реакция получения найлона) окислительная деструкция полипропилена электролиз этанола, уксусной кислоты, солей органических кислот, нитрометана и т. п. Выход хемилюминесценции в этих реакциях порядка 10 — Ю . [c.121]

    Равновесной поликонденсацией называется такой процесс синтеза полимера, который характеризуется небольшими значениями констант скоростей и обратимым характером превраше-ний. Поликонденсация - многостадийный процесс, каждая ступень которого является элементарной реакцией взаимодействия функциональных групп. В качестве постулата принято считать, что реакционная способность концевых функциональных групп не изменяется при росте полимерной цепи. Процесс равновесной поликонденсации представляет собой сложную систему реакций обмена, синтеза и деструкции, которую называют по-ликонденсационным равновесием. В общем виде реакции поликонденсации могут быть представлены как реакции функциональных групп, например  [c.267]

    Многочисленными экспериментальными исследованиями уста иовлепо, что наряду с реакцией поликонденсации протекают про цессы, вызывающие деструкцию образующихся макромолекул по длине их цепи. Эти деструктивные процессы являются резуль гатом взаимодействия макромолекул полимера с исходными ве ществами и низкомолекулярными побочными продуктами поли конденсации. В зависимости от типа исходных компонентов п начальных продуктов поликонденсации процессы деструкции могут происходить по принципу ацидолиза (деструкция под действием кислот), аминолиза (деструкция полимера под действием аминов), алкоголиза (деструкция под действием спиртов). Деструктирующее действие перечисленных низкомолекулярных веществ распространяется прежде всего на макромолекулы, достигшие наибольших размеров. Вследствие меньшей стабильности и более легкой деструкции макромолекул высших фракций про- [c.167]

    ИСХОДИТ непрерывное нивелирование размеров растущих макромолекул в процессе поликонденсации (рис. 59). Сравнительно небольшое различие фракций полимера по молекулярному весу и случае линейной поликонденсации можно объяснить большей скоростью деструкции высокомолекулярных фракций. Протеканием процесса деструкции объясняется также значительно меньшая величина среднего молекулярного веса полимера, по сравнению с молекулярным весом, найденным по расчетным данным (из условий равновесного состояния в процессе поликонденсации). Механизм реакции, вызываю. цей деструкцию цепей полимера иод влиянием 1шзкомолекулярпых ветеств. можно представит следуюишм образом  [c.168]

    При проведении поликонденсации дикарбоновых кислот и двухатомных спиртов в высококипящем растворителе облегчается )авномерное распределение тепла в реакционной среде и уменьшается степень деструкции исходных компонентов. Однако применение высококипящих растворителей, необходимость последующего осаждения полимера из раствора и его сушки усложняет и удорожает технологический процесс. Поэтому ноликонденсацию предпочитают проводить в расплаве исходных компонентов. [c.421]

    Наиболее удобно проводить реакцию поликонденсации при нагревании смеси реагирующих компонентов выше температуры их плавления (реакция в расплаве). Однако не все мономеры могут подвергаться действию высокой температуры без окислительной деструкцин и не во всех случаях температура плав.пения смеси соответствует благоприятным условиям равновесия полимер низкомолекулярная фракция. Для уменьшения окислительной деструкции рекомендуют проводить реакцию в атмосфере азота. Для регулирования температуры поликонденсации и предотвращения местных перегревов целесообразно вести процесс в растворе. При таком способе поликонденсации предотвращается и возможное , деструкции мономеров, так как при этом уменьшается вероятность протекания побочных процессов. Однако обычно применяемые аминокислоты и их соли растворимы лишь в малодоступных растворителях, поэтому проведение реакции в растворе удорожает производство полиамида. [c.443]

    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    Средняя степень поликонденсации = СоС = - -k oi линейно растет во времени. Предельное значение степени поликонденсации зависит от соотношения концентраций функциональных групп Г = A, i. = (1 -ь г) (1 г)-1 и, например, для г = 0,99 = 100. Низкая степень поликонденсации получается в присутствии монофункциональных соединений, присоединение которых к концу растущей цепи прекращает рост, о используют для регулирования молекулярной массы полимеров. Другой фактор, ограничивающий рост цепи, — равновесный характер конденсации и деструкции под действием выделяющегося низкомолекулярного продукта А (например, воды). В результате этого Р зависит от константы поликонденсационного равновесия К и молярной доли вещества А — /пд  [c.283]

    Степень полидисперсности связана с механизмом образования полимера. Так, для полимера, полученного радикальной полимеризацией, при рекомбинационном обрыве цепи Ai /Ai = 1 5, при обрыве цепи в результате диспропорционирования М /Мп = 2. Для продуктов поликонденсации наиболее вероятное отношение Мш/Мп = 1 + <7, где —степень завершенности реакции при q- отношение MwfMn 2. Но полимер, подвергнутый различным химическим или физическим превращениям, при которых могут происходить и деструкция и сшивание макромолекул, может характеризоваться практически любым отношением Ми-/М . [c.94]

    Нагревание исходных продуктов растительного происхождения в инертной среде прн температуре 200—400°С приводит к внутримолекулярной дегидратации. Выше 300 С происходит интенсивное образование твердых продуктов с сопряженными двойными углеродными связями, а также воды, смолистых и газообразных продуктов деструкции. Считается, что именно в период термической обработки до 500°С зарождается микроструктура конечной углеродной матрицы, причем основными процессами являются разрыв нетермостойких С—О- и С—С-связей, сопряженных с С = 0, и дал1>нейшая поликонденсация углеродных атомов. [c.54]

    Другой причиной, ограничивающей молекулярную массу при линейной поликонденсации, является равновесный характер реакции И выделение низкомолекулярного вещества (например, воды), способного реагировать с уже образовавшимися макромолекулами, вызывая их деструкцию. Зависимость предельной стйпеии поликонденсации от концентрации низкомолекулярного вещества выражается уравнением поликонденсационного равновесия [c.59]


Смотреть страницы где упоминается термин Деструкция при поликонденсации: [c.536]    [c.43]    [c.37]    [c.42]    [c.198]    [c.199]    [c.34]    [c.155]    [c.192]    [c.189]    [c.83]   
Основы химии высокомолекулярных соединений (1976) -- [ c.152 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.165 , c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Деструкция полимеров при поликонденсации

Реакции деструкции при поликонденсации



© 2025 chem21.info Реклама на сайте