Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты каталитическое гидрирование

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Карбоновые кислоты легко восстанавливаются до первичных спиртов под действием алюмогидрида лития [457]. Реакция не останавливается на стадии образования альдегида (см., однако, т. 2, реакцию 10-85). Условия этого восстановления очень мягкие — реакция хорошо идет при комнатной температуре. Используют и другие гидриды, но не боргидрид натрия (см. табл. 19.5) [458]. Каталитическое гидрирование в этом случае также обычно оказывается неэффективным. Для восстановления карбоксильных групп особенно удачно использование борана (табл. 19.4), который позволяет селективно проводить реакцию в присутствии многих других функциональных групп (хотя реакция с двойными связями идет примерно с той же скоростью) [459]. Гидрид алюминия восстанавливает группы СООН, не затрагивая связей углерод — галоген в той же молекуле. [c.316]

    Восстановление и каталитическое гидрирование. Восстанавливая карбоновые кислоты, можно получить альдегиды и первичные спирты, например  [c.400]

    Осуществлять подобное восстановление могут в соответствии-с их положением в ряду напряжения только неблагородные металлы. Щелочные металлы способны восстанавливать даже наиболее инертные карбонильные соединения (например, эфиры карбоновых кислот), в то время как магний или алюминий реагируют только-с альдегидами и кетонами. Цинк и железо способны быть восстановителями только в кислой среде. Однако и другие вещества, например благородные металлы (платина, палладий), могут действовать аналогично, отрывая необходимые для восстановления карбонильного соединения электроны от молекулярного водорода и перенося их на карбонильное соединение (каталитическое гидрирование) (см. также разд. Г. 4.5.2). [c.114]

    Для каталитического гидрирования карбоновых кислот и сложных эфиров наиболее пригоден меднохромовый катализатор, процесс проходит при высоких температурах (100—300 °С) и высоком давлении (200—300 атм). Этот метод имеет значение в промышленности, в лаборатории же проще осуществить восстановление сложных эфиров другим путем [восстановление по Буво —Блану, см. схему (Г. 7.94) восстановление комплексными гидридами, см. разд. Г, 7.3.4]. [c.116]

    Енамины восстанавливают до алкенов алюмогидридом лития и хлористым алюминием 1341 или каталитическим гидрированием над платиной с последующей обработкой спиртовым раствором едкого кали и водяным паром 1351. Более высокие выходы (85—98%) получают, превратив сначала исходное вещество в боран с последующей обработкой карбоновой кислотой [361 (пример б). Поскольку енамины получают из карбонильных соединений, этот метод ценен тем, что дает возможность синтезировать циклоалкены из кетонов. Наличие в цикле двух карбонильных групп дает возможность ввести одну двойную связь 1351 [c.131]


    Восстановление карбоновых кислот обычными мето-1ми — каталитическим гидрированием, натрием в спир- [c.639]

    В целом карбоновые кислоты с трудом поддаются восстановлению как путем каталитического гидрирования, так и при действии натрия в Спирте, но восстановление до первичных спиртов при действии литийалюминийгидрида происходит энергично [c.466]

    Поскольку восстановленная медь является подходящим катализатором для гидрирования таких веществ, как нитросоединения, нитрилы, оксимы, амиды кислот, карбоновые кислоты и их эфиры, следовало бы подробнее изучить каталитические свойства активной меди. [c.218]

    В лаборатории карбонильные соединения обычно синтези руют наиболее простыми одностадийными способами. Так, карбоновые кислоты получают окислением первичных спиртов (гл. 6) или альдегидов (разд. 8.7,А), гидролизом итрилов (гл. 7), реакцией реактивов Гриньяра с диоксидом углерода (гл. 6) или в случае ароматических кислот окислением метил-бензолов (гл. 5). Производные карбоновых кислот обычно синтезируют или прямо из кислот, или через промежуточный ацилхлорид (разд. 8.4). Альдегиды можно получить парциальным (неполным) окислением первичных спиртов (гл. 6) или каталитическим гидрированием ацилхлоридов (разд. 8.7, Б), а кетоны — окислением вторичных спиртов (гл. 6). Ароматические альдегиды и кетоны можно также получать по реакции Фриделя — Крафтса и подобным реакциям (гл. 5). [c.199]

    Для каталитического гидрирования карбоновых кислот и сложных эфиров наиболее пригоден меднохромовый катализатор, работающий при высоких температурах (100—300°С) и высоком давлении (20—30 МПа 200—300 атм). Этот метод применяется преимущественно в промышленности, в лаборатории проще провести восстановление эфиров другими методами [восстановление по Буво—Блану, см. схему (Г.7.79) восстановление комплексными гидридами, см. разд. Г,7.3.4]. [c.123]

    Алифатические амины можно получать не только ранее упомянутым восстановлением нитропарафинов, но главным образом каталитическим гидрированием нитрилов. Поскольку при этом легко отщепляется ЫНд и образуется смесь первичных, вторичных и третичных аминов, гидрирование часто проводят в среде газообразного ЫНд в присутствии никелевого или кобальтового катализатора при 200—210°. В этих условиях образуются преимущественно первичные амины. Как известно, нитрилы легко получаются каталитической дегидратацией аммониевых солей жирных кислот. Для этого пары карбоновых кислот можно пропускать в смеси с избытком циркулирующего аммиака при 320—400° над катализатором, например силикагелем, фосфатом или окисью алюминия особенно эффективным катализатором является фосфат бора. Таким способом из уксусной кислоты получается ацетонитрил, из стеариновой кислоты—нитрил стеариновой кислоты, из адипиновой кислоты—нитрил адипиновой кислоты (выход его составляет всего 75%). Предложены новые пути получения нитрила адипиновой кислоты с лучшими выходами, например из ацетилена. Амины могут быть получены также непосредственно из кислот и аммиака на специальных катализаторах, в присутствии которых одновременно протекают дегидратация и гидрирование. [c.237]

    При обработке соединений, содержащих двойные связи, озоном (обычно при низких температурах) получаются вещества, называемые озонидами (11), которые можно выделить. Многие из них взрывоопасны, поэтому их чаще разлагают действием цинка в уксусной кислоте или путем каталитического гидрирования, что приводит к 2 молям альдегида или 2 молям кетона или к 1 молю кетона и 1 молю альдегида в зависимости от природы заместителей у двойной связи в олефине [148]. Разложение озонидов И можно осуществить также с помощью многих других восстановителей, среди которых триметилфосфит [149], тиомочевина [150] и диметилсульфид [151]. Однако озониды можно также либо окислять действием кислорода, перкислот или Н2О2, в результате чего получаются кетоны и (или) карбоновые кислоты, либо восстанавливать действием алюмогидрида лития, боргидрида натрия, ВНз или путем каталитического гидрирования избытком Нг, что дает 2 моля спирта [152]. Озониды можно также обрабатывать либо аммиаком и водородом в присутствии катализатора, что приводит к соответствующим аминам [153], либо спиртом и безводным НС1, в результате чего получаются сложные эфиры карбоновых кислот [154. Следовательно, озонолиз — синтетически важная реакция. В прошлом эта реакция была основой ценного метода установления положения двойной связи в неизвестных соединениях, хотя с распространением инструментальных методов установления структуры этот метод применяется все реже. [c.280]

    Восстановление карбоновых кислот протекает с большим трудом. Обычный восстановитель (кислота + металл) в этих условиях неэффективен. Каталитическое гидрирование кислот при высоком давлении (100 атм) в присутствии хромита меди (СиСгОг) как катализатора приводит к получению спиртов. Обычные металлические катализаторы (никель, палладий, платина)—инертны. Алюмогидрид лития гладко превращает карбоновые кислоты в соответствующие спирты  [c.147]


    Продукт этой реакции (2-нитро-2-метил-1-нропанол) каталитическим гидрированием превращается в 2-амино-2-метил-1-пропанол, являющийся ценным компонентом мыла и эмульгаторов. Интересны также сложные эфиры этих нитроспиртов. Эфиры карбоновых и фосфорных кислот представляют собой хорошие пластификаторы для пластмасс. Нитраты нитроспиртов являются сильными взрывчатыми веществами. Наиболее интересен в этом отношении нитрат триметилолнитрометана, который может быть получен по следующей схеме  [c.577]

    Восстановление карбонильной группы в карбоновых кислотах и их афирах до метиленовой переводит их в соответствующие спирты. Эту реакцию можно провести тремя методами а) по Буво — Блану б) каталитическим гидрированием в присутствии меднохромовото катализатора или иикелн Рсвая в) комплексными гидридами металлов. [c.83]

    Восстановление изопропилатом алюминия проводилось как с алифатическими, так и с ароматическими альдегидами и кетонами, благодаря специфичности восстанОЕителя другие группы, способные к восстановлению, при этом пе затрагиваются. Папример, двойные связи между угле-оодными атомами, в том числе и расположенные в а,[ поло5кепии к карбонильной группе, сложные эфиры карбоновых кислот, нитрогруппы и реакционноспособные атомы галоида не восстанавливаются изопропилатом алюминия в противоположность тому, что имеет место при других реакциях восстаповления с участием металлов в кислой или ш елочной среде или даже в некотор лх случаях при каталитическом гидрировании. Другая характерная особенность Заключается в том, что восстановление карбонильной группы пе останавливается на промежуточ- [c.197]

    Карбоновые кислоты с большим трудом могут восстанавливать -ся каталитическим гидрированием, действием натрия в сшфте и т.д. Достаточно гладко восстановление кислот происходит при действии литийалюминийгидрида (алюмогидрид лития) в безводном эф1фе  [c.113]

    Большую практическую ценность представляют продукты, возникающие при дальнейших превращениях озонида, — спирты, альдегиды, кетоны, кислоты и даже амины. Спирты образуются при восстановлении озонида гидридами металлов (алюмогидридом лития пли борогидридом натрия) или при каталитическом гидрировании в присутствии никелевого или платинового катализатора (схема 59), Альдегиды получают при более мягких условиях восстановления для этой цели обычно используют цинк в кислоте, три-фенилфосфин, диметилсульфид нли катализатор Линдлара (схема 60). Алкины превращаются в карбоновые кислоты в условиях превращения алкенов в альдегиды. Амины образуются при восстановлении озонидов в присутствии никеля Ренея и аммиака (схема 61) или восстановлением оксимов. Кислоты образуются при действии различных окислителей, например пероксикислот или оксида серебра (схема 62), [c.54]

    Восстановление соединений с кислородными функциональными группами. При восстановлении с помощью смеси красного фосфора и иодистоводородной кислоты в запаянных ампулах или в ряде случаев при каталитическом гидрировании спирты, альдегиды, кетоны и карбоновые кислоты превращаются в алканы. [c.197]

    Препаративным путем предельные углеводороды могут быть получены восстановлением галоидных алкилов, декарбоксилиро-ванием карбоновых кислот, гидрированием соответствующих непредельных углеводородов и другими способами. Наиболее удо -ным методом препаративного получения газообразных предельных углеводородов, за исключением метана, является метод каталитического гидрирования соотиетствугоишх непредельных углевод -родов. [c.88]

    В 1940 г. Венцелем был разработан процесс каталитического гидрирования оксида углерода в стационарном слое плавленого железного катализатора — синол-процесс. Синтез проводили при относительно низких температурах (180— 200 °С) и 0,5—2,5 МПа. В жидких продуктах синтеза кроме спиртов имелось-2—7°/о (масс.) других кислородсодержащих соединений (сложные эфиры, альдегиды, кетоны и карбоновые кислоты). Выход первичных алифатических спиртов достигал 60—70% от суммы жидких продуктов. [c.307]

    Разнообразные синтезы меченых сложных эфиров, альдегидов, углеводородов, аминов и т. д. были осуществлены на основе гриньяровского метода получения карбоновых кислот. Этот метод был использован и у нас в ряде синтетических работ, проводивн1ихся н связи с изучением механизма крекинга [28]. Иснользонание смешанного алюминий-литиевого гидрида в качестве восстановителя сильно упростило путь к спиртам [29]. Это хороший пример эффективного использования реагентов, не применимых вследствие дороговизны в тяжелом органическом синтезе, в целях синтеза меченых соединений. По этой же причине перспективно применение весьма чистых и хорошо управляемых электрохимических методов, а также катализаторов па основе редких элементов. В последнее время мы начали обследование пути каталитического синтеза меченых веществ из СО, которую можно получать прямо из ВаСОд нагреванием с соответствующими восстановителями или из СО2. Так, в частности, гидрированием С О по Фишеру — Трошпу. можно получать смесь из очень большого числа углеводородов нормального строения с постоянным атомным содержанием С по всему ряду. [c.419]

    Циклическая система птеридина единственная, которая может быть атакована либо по пиримидиновому, либо по пиразиновому ядру. Так, фолевая кислота действием N3644 гидрируется по пиразиновому ядру, что может быть использовано для получения 5-алкил-5,6,7,8-тетрагидропроизводных каталитическое гидрирование этилового эфира птеридинон-7(8Я)-карбоновой-6 кислоты (31) дает 5,6-дигидросоединение (32), в то время как действие ЫаВН4 приводит к 3,4-дигидропроизводному (30) [98]. [c.316]

    Способы получения. Пиперидин получается восстановлением пиридина натрием в спирте, оловом в соляной кислоте и, лучше всего, каталитически в присутствии никеля. Этот метод можно применять к гомологам и к некоторым производным пиридина, например к карбоновым кислотам пиридина. В результате гидрирования четвертичных солей пиридина получаются К-алкилпиперидины [c.723]

    Амиды ароматических карбоновых кислот восстанавливаются в бензиламины алюмогидридом лития или при каталитическом гидрировании в жестких условиях, например над никелевым катализатором при 250 °С и 1—2 МПа [1082]. Восстановление амидной группы протекает труднее, чем большинства других групп, которые, таким образом, можно восстанавливать, не затрагивая амидную функцию. Получение амида и гидрирование совмеш.ают, вводя в реакцию карбоновую кислоту, аммиак и водород  [c.574]

    Имеется целый ряд работ, поставленных с целью ьыяснения возможности расщепления озонидов путем каталитического гидрирования, а не при действии цинка и ледяной уксусной кислоты, т. е. водорода в момент выделения. Ф. Г. Фишер, Г. Дюлль и Л. Эртель [1391] исследовали условия, при которых эта реакция расщепления, протекающая по схеме, приведенной на стр.510,может дать наибфлее удовлетворительные выходы. Ими было установлено, что при озонировании необходимо тщательно соблюдать ряд определенных условий реакцию следует проводить в разбавленном растворе при низкой температуре и по возможности не применять цри этом избытка озона. При гидрировании, протекающем с большим выделением тепла, следует избегать малейшего разогревания, так как в противном случае вместо расщепления основной реакцией может стать так называемая кислотная перегруппировка озонидов, в результате которой образуется равномолекулярная смесь карбоновых кислот и карбонильных соединений. В качестве контакта авторы применяли катализатор, приготовленный, по М. Бушу и Г. Штеве [1392], путем осаждения палладия на углекислом кальции, который содержал 5% палладия. [c.512]

    Вследствие резонанса этот ион очень устойчив и не способен к восстановлению. Положение изменяется при переходе к сульфохлориду, который способен восстанавливаться. Аналогичная ситуация имеет место при переходе от карбоновых кислот к соответствующим хлорангидри-дам. В то время как первые чрезвычайно стабильны, вторые могут быть восстановлены до альдегидов при каталитическом гидрировании. Первоначальным продуктом восстановления сульфохлоридов цинковой пылью в воде являются сульфиновые кислоты ArSOgH [c.221]

    Значительно лучше протекает восстановление сложных эфиров карбоновых кислот, которое, правда, требует проведения реакции при высокой температуре и повышенном давлении (205— 210°, 100 ат), но зато приводит к высоким, а иногда и к количественным, выходам спнрта32б. ззт Некоторые авторы даже считают, что каталитическое гидрирование сложных эфиров с Nie. к. является наиболее простым из всех описанных способов получения соответствующих первичных спиртов. В то же время имеются указания, что для целей разбираемого восстановления Nie, к, значительно менее выгоден, чем, например, хромит Си (катализатор Буво—Бланка) . [c.60]

    Предельные углеводороды получают методом каталитического гидрирования непредельных углеводородов, восстановлением галоидных алкилов, декарбоксилирова-нием карбоновых кислот и др. [c.101]


Смотреть страницы где упоминается термин Карбоновые кислоты каталитическое гидрирование: [c.111]    [c.46]    [c.111]    [c.318]    [c.583]    [c.23]    [c.345]    [c.244]    [c.112]    [c.122]    [c.316]    [c.52]    [c.115]    [c.112]   
Общий практикум по органической химии (1965) -- [ c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитическое гидрировани



© 2024 chem21.info Реклама на сайте