Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды моноолефины

    Применение изложенной схемы для анализа фракции концентратов а-олефинов Сц—0 4 позволило определить компонентный состав углеводородов, включая а-моноолефины g— g, разветвленные моноолефины С —С14, моноолефины с внутренней двойной связью циклические моноолефины Сю Gjg, а, со-диены Сц— 4 и м-парафины Сщ—Полученные данные позволяют также рассчитать молекулярно-массовое распределение каждого типа углеводородов моноолефины, диолефины, парафины, циклопарафины. [c.76]


    Непредельные алифатические углеводороды (моноолефины, ди-олефины, ацетиленовые и др.) в нефтях и нефтяных газах практически отсутствуют. [c.14]

    Ненасыщенные углеводороды моноолефины (этилен, пропилен, бутены, пентены, высшие олефины), ацетилен и диеновые (бутадиен-1,3, изопрен) углеводороды. [c.17]

    Процесс основан на том, что силикагель адсорбирует ароматические углеводороды раньше олефинов и насыщенных углеводородов. Поэтому, если пропускать углеводородную смесь, содержащую ароматические, через камеру, заполненную гелем кремнекислоты, то они будут задерживаться силикагелем, а насыщенные углеводороды и моноолефины пройдут через камеру. Когда силикагель полностью насытится ароматическими (практически применяют избыток силикагеля до /з от всей загрузки), приступают к десорбции. Для этого берут смесь высокомолекулярных ароматических углеводородов, которые вытесняют ранее адсорбированные ароматические углеводороды с силикагеля и выводят ее из адсорбера. Низкокипящие углеводороды можно затем легко выделить из смеси перегонкой. [c.109]

    Истинной полимеризацией, предложенной Ипатьевым и Пинесом [27], называется полимеризация, в которой продуктами реакции являются моноолефины более высокого молекулярного веса, кратного молекулярному весу мономера под смешанной же полимеризацией понимают такую полимеризацию, в которой продукт реакции представляет сложную смесь олефинов, диолефинов, парафинов, циклопарафинов, циклоолефинов и ароматических углеводородов. Наконец, третий термин гетерополимеризация употребляется в тех случаях, когда получающийся полимер состоит только из моноолефинов с молекулярными весами, не кратными молекулярному весу мономера. [c.187]

    На основании экспериментальных данных непредельные углеводороды одинакового молекулярного веса по склонности к окислению при низких температурах можно расположить в следующей последовательности циклические диолефины с сопряженными двойными связями > алифатические диолефины с сопряженными двойными связями > ароматические моноолефины > циклические олефины с одной двойной связью с цикле > диолефины с удаленными двойными связями > алифатические моноолефины. [c.224]

    Обзор работ (смЛ ) по гидроочистке с использованием катализатора -Ь N1 + 8. В процессе гидроочистки светлых нефтепродуктов селективно удаляется (Ю— 70% серы (при ее начальном содержании 0,4—1,5%) без крекинга, полимеризации и заметного гидрирования ароматических углеводородов. Гидрогенизация диенов проходит полностью, моноолефинов — не полностью. Срок службы катализатора до регенерации [c.52]


    При выборе разделяющих агентов для смесей углеводородов 4 принималось во внимание, что в полярных веществах лучше всего растворяются диолефины, а хуже всего — парафины. Моноолефины занимают промежуточное положение. Следовательно, полярные вещества должны увеличивать летучесть парафинов и моноолефинов по отношению к диолефинам. Принималась во внимание также стабильность, доступность и стоимость полярных веществ. С учетом этих требований на основе определения коэффициентов относительной летучести смесей углеводородов в присутствии разных веществ наилучшими разделяющими агентами были признаны фурфурол, ацетон и фенол в смеси с водой. [c.290]

    Выходящий из реактора поток, состоящий из моноолефинов, после отделения водорода и легких углеводородов смешивают с бензолом и направляют в реактор 2. Температура в реакторе— 38°С, соотношение бензол олефин = 8 1, продолжительность реакции обычно около 15 мин. Выход моющего компонента составляет 90% в пересчете на бензол, его биологическая разлагаемость 95%. [c.260]

    Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и Н2) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от С2 и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.161]

    Условия процесса (патентные данные) давление — 0,1—0,4 МПа температура — 450—480 Т объемная скорость подачи сырья — 20—40 ч мольное соотношение водород/углеводород = 8- 10. В этих условиях при дегидрировании и-парафинов Сц—С14 содержание -моноолефинов в жидком продукте составляет [c.61]

    Термодинамическая возможность образования кокса в результате глубокой полимеризации непредельных углеводородов рассматривалась по следующей схеме парафиновый углеводород после отщепления, например, метана превращается в моноолефин, а в дальнейщем [c.28]

    Вследствие реакции диспропорционирования водорода , характеризующей каталитический крекинг, содержание непредельных углеводородов здесь ниже, чем при термическом крекинге, вследствие чего приемистость (степень роста октанового числа) к тетраэтилсвинцу выше. Эта же реакция обусловливает и большую стабильность бензина каталитического крекинга, в котором содержатся лишь алифатические моноолефины, в то время как в бензине термического крекинга находятся и обусловливающие его малую стабильность диолефины и циклические моноолефины. [c.82]

    При гидроочистке и гидростабилизации продуктов вторичного происхождения расход водорода на реакцию значительно больше, чем для прямогонных дистиллятов. Водород здесь дополнительно расходуется на гидрирование диеновых углеводородов при селективной очистке и на гидрирование моноолефинов при глубокой очистке. Расход водорода на гидроочистку некоторых нефтепродуктов вторичного происхождения [9, 10] следующий  [c.15]

    При получении ароматических углеводородов бензин пиролиза подвергают двухступенчатому гидрированию. На первой ступени гидрируют диолефины, на второй — моноолефины. Гидрирование олефинов требует дополнительного расхода водорода, однако общий баланс Нз на нефтехимическом предприятии с использованием в качестве исходного сырья бензина остается положительным. Специ- [c.32]

    Поскольку описанное положение является общим свойством таких систем, пунктирная линия (рис. X. 65), характеризующая расположение точек кипения и состава бинарных азеотропных смесей этилового спирта и приведенных выше парафиновых углеводородов, может быть использована для определения точек кипения и состава бинарных азеотропных смесей этилового спирта с другими парафиновыми углеводородами, для которых известны температуры кипения, но неизвестен состав образующейся азео-тронной смеси. Следует отметить, что точки для других углеводородов располагаются над линией для парафиновых углеводородов примерно в следующем порядке циклопарафины, моноолефины, диолефины и ароматические углеводороды. [c.245]

    Для количественного определения диолефинов и циклодиенов и отделения их от моноолефинов и нафтиленов и других классов углеводородов применяют обработку малеиновым ангидридом. Последний реагирует с диеновыми углеводородами с образованием кристаллических производных тетрагидрофталевого ангидрида по схеме [c.512]

    Присутствие непредельных углеводородов типа моноолефинов, диолефинов и циклоолефинов в бензинах прямой гонки и жидких продуктах пиролиза принято считать нежелательным из-за их невысокой стабильности. [c.659]

    По топливному варианту наиболее целесообразно перерабатывать пироконденсаты с относительно невысоким содержанием ароматических углеводородов — 40—45%. Из жидких продуктов пиролиза жесткого режима, характеризующихся высоким содержанием ароматических углеводородов, более рационально извлекать эти соединения. Для выделения ароматических углеводородов применяют двух- и трехступенчатые технологические схемы, дпс.коль- -ку в этом случае недостаточно удалять только диолефины. Для последующего селективного выделения ароматических углеводородов экстракцией или экстрактивной ректификацией требуется также гидрирование моноолефинов, отрицательно влияющих на применяемые экстрагенты. [c.185]


    Кокс может образовываться в рассматриваемых условиях и по следующей схеме. Парафиновый углеводород после отщепления, например, метана, превращается в моноолефин, а затем в диен, [c.14]

    В данной главе рассматривается главным образом химизм алкилирования парафиновых углеводородов моноолефинами. Описание промышленных процессов и их результатов приводится лишь в объеме, облегчающем понимание применения теории алкилирования в промышленной практике. Схемы промышленных алкплационных установок, их видоизменения, режим работы, экономика и эксплуатационные показатели подробно рассмотрены во втором томе энциклопедии. [c.174]

    Алкилирование изопарафиновых углеводородов моноолефинами катализируется протоновыми кислотами (серной кислотой [6, 24] и фтористоводородной кислотой [13, 20]), а также галоидными катализаторами типа катализаторов Фриделя-Крафтса (хлористый алюминий [15, 16, 27], фтористый бор [15], хлористый цирконий [16] и другие). В нефтепереработке практическое значение в качестве катализаторов алкилирования имеют только серная кислОта и фтористый водород вследствие легкости работы с этими жидкими продуктами, высокой избирательности реакции, возможности регулировать активность катализатора и отсутствия коррозии обычных конструкционных материалов. [c.177]

    Изучение относительных скоростей изомеризации моноолефиновых углеводородов. Моноолефины пропускались через каталитическую трубку с амидом кальция при 70°С, -а в случае 2,3-диметилгексена-3 при 120°С, с объемной скоростью 0,2чйс . Процент превращения моноолефинов вычислялся по изменению показателя преломления углеводорода в результате изомеризации. Этот способ определения состава, пригодный для бинарных смесей, мог быть применен и в данном случае, так как оказалось, что при изомеризации амиленов и 2,3-диметилбутенов получаются бинарные смеси, а при изомеризации гексена-1 и октенов, хотя и образуются смеси трех изомеров, но константы двух из них практически совпадают (гексена-2 и гексена-3  [c.605]

    Легкие углеводороды Моноолефины, диолефины (пропилен, бутен-1, бутадиен) А1аОз-СгаОз [779) [c.160]

    В тексте имеются ссылки на изданные в 1956 и 1957 гг. издательством Akademie Verlag книги автора Химия и технология парафиновых углеводородов и Химия и технология моноолефинов , в которых часть веществ, упоминаемых в настоящей книге, была рассмотрена значительно более широко и подробно. Процессы, которые не могут рассматриваться как нефтехимические, в особенности сортировка нефтей, получение карбюраторного горючего, а также производство высокооктановых бензинов методами алкилирования и полимеризации, рассматриваются в настоящей книге лишь вкратце. [c.8]

    Количество насыш енных (неолефиновых) углеводородов, образуюш,ихся при гидрополимеризации, тем больше, чем выше концентрация серной кислоты. Так, например, в смеси пентенов с 98%-ной серной кислотой 70% исходного продукта превращаются в полимеризат, выкипающий в пределах 90—350° п состоящий в большей части пз парафиновых углеводородов. При этом растворимая в серной кислоте часть, выделяемая при разбавлении ледяной водой, оказывается сильно ненасыщенной и обнаруживает до трех и более двойных связей на молекулу. Реакция протекает по карбониум-ионному механизму. В присутствии концентрированной серной кислоты водород олефинов может переноситься из одной молекулы в другую, причем одна молекула превращается в парафин, а другая в диолефин, который еще раз может служить донором водорода, в то время как моноолефин является акцептором. [c.62]

    Для предельных углеводородов индекс адсорбции на обычном товарном силикагеле равен пулю, для моноолефинов меняется от 2 до 4, для моноциклических ароматических углеводородов находится в пределах 22—31, а для производных нафталина 45—53. Значения индексов адсорбции на силикагеле для некоторых других органических соединений, включая некоторые неугловодородные соединения, следующие. [c.158]

    Молярный объем циклоолефшюв и ароматических углеводородов. Переход от циклоалкана к циклоалкену, затем к циклоалкадисну и к ароматическому углеводороду представляет значительный интерес. Простой моноолефин типа циклогексена обладает умерегной реакционной способностью. Бензол относительно химически неактивен из-за симметрии молекулы и резонанса. [c.244]

    Катализаторы. Несмотря на изучение конверсии парафиновых углеводородов до соответствующих моноолефинов многими исследователями, в период с 1919 по 1930 г., удовлетворительного катализатора реакции найдено не было. Применение Фреем и Гуппке [17] для изучения равновесия этих реакций катализатора из окиси хрома определило основное направление поисков промышленных катализаторов. Фрей и ГуппКе установили возможность получения путем дегид  [c.194]

    Влияние рабочих условий. Исследования Гроссе и Ипатьева [22] показали важность подбора оптимальных рабочих условий для процесса дегидрирования парафиновых углеводородов до моноолефинов. Как указывают авторы, в оптимальных условиях при наиболее полной рециркуляции врлходы олефинов достигали 90%, нри этом образовавшийся газ содержал 90% водорода. Однако при каждой заданной температуре требовался для достшкення максимальной избирательности тщательный выбор скорости подачи сырья. Зависимость между выходом олефинов и скоростью подачи сырья для катализатора состава 97% AlgOg — 3% rgOg представлена в табл. 7. [c.196]

    Ацетилен, метилацетилен и аллен каждый в отдельности могут быть избирательно прогидрогенизированы до моноолефинов, хотя каждый из моноолефинов в отдельности гидрогенизируется быстрее, чем предшествующий ему углеводород [18]  [c.241]

    Некоторые g и углеводороды с сопряженной системой непредельных связей можно гидрировать при обычной температуре и атмосферном давлении, проводя реакцию последовательно через четыре ступени, с образованием триолефина, диолефина, моноолефина и парафина [147]. В присутствии платины непредельные углеводороды обычно гидрогени-зуются сразу до парафинов, но в присутствии никеля Реиея можно задержать реакцию на стадиях, соответствующих 1) частичн01Ч гидрогенизации тройной связи, 2) присоединению водорода к триепу в положение 1,6 и 3) присоединению к диену в положение 1,4  [c.245]

    С2Н5 -СН2-СН-СН2-СН2-СН-СН2—С2Н5 В двух углеводородах этой серии возникает пространственное затруднение, обусловленное разветвлением, и поэтому можно задержать реакцию гидрогенизации, катализируемую платиной, на стадии моноолефина СНз СНз СНз СНз [c.245]

    Долгое время считалось, что непредельные углеводороды бензинов крекинга имеют, в основном, алифатическое строение и относятся к классу моноолефинов [46]. В работах более позднего периода при использовании селективного каталитического гидрирования [47, 4 ] удалось доказать наличие непредельных углеводородов циклической структуры. Так, при селективном каталитическом гидрировании бензина термического крекинга, содержащего 36 вес. % непредельных углеводородов, было найдено, что 33% непредельных превращается в парафины, 37% — в нафтены и 30% — в алкиларо-матические углеводороды [4]. Следовательно, исходный бензин содержал олефины, циклоолефины и ароматические углеводороды с двойной связью в боковой цепи. [c.15]

    Высокооктановые моноолефиновые углеводороды обладают очень высокой чувствительностью. Как и в случае парафинов, чувствительность моноолефинов снижается с уменьшением октановых чисел и становится отрицательной. Диены обладают обратной зависимостью чувствительности от детонационнрй стойкости. Чувствительность некоторых из них достигает 35—40 пунктов и превышает значение этого показателя всех других углеводородов. [c.112]

    После присоединения первого моля водорода смесь моноолефинов богата этилциклогексеном (отношение 3 1 для Р1—С и 9 1 для N1). Нет оснований ожидать селективности, если обе двойные связи идентичны однако тот факт, что среди начальных продуктов реакции не появляются насыщенные углеводороды, показывает, что двойная адсорбция молекулы маловероятна [521  [c.86]

    Описан двухступенчатый процесс гидростабилизации пиробензинов (фирма Ке11о 2). В первой ступени диены и ацетиленовые углеводороды селективно гидрируются до моноолефинов продукт первой ступени может быть добавлен в товарный бензин. Во второй ступени гидрируются моноолефипы и разрушаются сернистые соединения, чтобы подготовить продукт к экстракции ароматических углеводородов. (См. 8 ) [c.84]

    Парафиновые углеводород Циклические Циклические моноолефины Циклические диолефины Ароматические углеюдороды Олефины [c.87]

    Одиако из данного положения нельзя делать вывод об абсолютной непригодности этого класса углеводородов ( лавным образом моноолефинов и цикленов) в качестве компонентов мoтopн(Jгo топлива, тем более, что они являются значительной составной частью продуктов крекинга. [c.659]


Смотреть страницы где упоминается термин Углеводороды моноолефины: [c.89]    [c.160]    [c.101]    [c.153]    [c.325]    [c.325]    [c.301]    [c.303]    [c.90]    [c.54]    [c.125]    [c.15]   
Масс-спектрометрия в органической химии (1972) -- [ c.55 ]




ПОИСК







© 2025 chem21.info Реклама на сайте