Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина получение и свойства

    На основании данных температурно-программированного восстановления (ТПВ), ИКС- и РФС-спектроскопии Г.Н.Маслянский предположил, что в случае Pt-Re и Pt-Ir катализаторов платина способствует восстановлению элементов VHI ряда (рения и иридия) до металлов с образованием биметаллических сплавов - кластеров, содержащих небольшое число смежных атомов платины, которые разделены рением или иридием Pt-Re-Re-Pt-Pt-Re-Pt. Для уменьшения доли реакций коксообразования мелкие Pt-Re и Pt-Ir кластеры подвергают предварительному дозированному осернению. Несмотря на это, полученные катализаторы становятся более чувствительными к отравлению серой. Если при работе на АПК сырье может содержать серу в количестве 5-10 млн 1, то сырье для Pt-Re или Pt-Ir катализаторов не должно содержать более 1 млн-1. Сравнение свойств полиметаллических катализаторов серии КР с монометаллическими АП-64 при близкой [c.153]


    ЩИХСЯ между силикатными слоями. По этой причине глинистые почвы очень удобны для выращивания растений. Это же свойство позволяет использовать их в качестве носителей для металлических катализаторов. Один из распространенных катализаторов-платиновая чернь - представляет собой тонкоизмельченную металлическую платину, полученную осаждением из раствора. Каталитическая активность платиновой черни усиливается высокоразвитой поверхностью металла. Аналогичный эффект достигается путем осаждения металла-катализатора (N1 или Со) на поверхность глины. Атомы металла покрывают внутренние поверхности силикатных листов, а кристаллическая структура глины предотвращает слипание металла в бесполезную массу. Согласно предположению Дж. Бернала, первые каталитические реакции на ранних стадиях эволюции жизни, еще до появления биологических катализаторов (ферментов), могли протекать на поверхности глинистых минералов. [c.637]

    В настоящем сообщении излагаются предварительные результаты исследования инфракрасных спектров поглощения аммиакатов четырех- и двухвалентной платины. Полученные результаты, а также некоторые литературные данные, касающиеся аналогичных соединений, использованы для сопоставления с кислотными свойствами аммиачных комплексов переходных металлов. [c.105]

    В это же время Штаудингер и Фрич гидрировали каучук в присутствии платиновой черни, в отсутствии растворителя, под давлением 93— 102 ат, при температурах 270—280° в течение 10 час. Никель действует так же, как и платина, но гидрирование идет не столь быстро и полно. Полученный ими гидрокаучук представлял бесцветную, прозрачную, твердую массу он не обладал эластическими свойствами исходного каучука и имел химические свойства насыщенных углеводородов. При пиролизе гидрированного каучука образовались олефины, из которых [c.218]

    Введение 0,02—2,5% натрия приводит к снижению изомеризующей и гидрирующей активности катализатора (рис. 2.3). Полученные зависимости свидетельствуют об одинаковом влиянии на состояние платины добавок, противоположным образом влияющих на кислотность катализатора (фтор и натрий), и могут быть объяснены изменением химического состояния платины за счет взаимодействия ее с фтором и натрием, следствием чего является снижение доли металлической платины и изменение ее каталитических и адсорбционных свойств. [c.48]

    Описано катализируемое соединениями платины присоединение замещенных силанов, имеющих связь 5 —Н, и радикальная прививка непредельных силанов, позволяющие получить реакционноспособные полимеры, отверждаемые, например, на холоду, со-гидролизуемые с галогенсиланами и т. д. [58]. Перспективы получения на основе углеводородных полимеров с силоксановыми боковыми цепями эластомеров с ценными свойствами (тепло- и морозостойкость, сопротивление истиранию и др.) иллюстрируются свойствами уже изученных смесей каучуков общего назначения с небольшими (5—10%) добавками силоксановых полимеров [59, 60]. [c.240]


    Способность платины действовать в качестве катализатора окисления органических паров в Oj известна уже много лет. В гл. 12 говорилось о том, как используется платина в каталитических реакциях. Это свойство платины можно использовать более прямым путем, и следующий пример только иллюстрирует эту возможность. Небольшой поток природного газа отбирается из находящейся под землей газовой линии и поступает в каталитическую ячейку, смонтированную на столбе над землей. Природный газ смешивается с воздухом и каталитически сжигается (беспламенное сгорание) на поверхности платины, В термоэлектрическом генераторе это тепло используется для получения электрического тока, подаваемого на металлический трубопровод для создания катодной зашиты от коррозии. Такие установки работают в изолированных помещениях без постоянного обслуживания. [c.319]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Примером синтеза прямой конденсацией может служить получение золя ртути. Для этого Нордлунд пропускал пары ртути через слой воды и. получал довольно высокодисперсную эмульсию ртутц в воде. Аналогичным способом могут быть получены золн серы, селена и теллура. Путем конденсации в жидкости паров меди, серебра, золота и платины,. полученных в вольтовой дуге, можно получить соответствующие золи в воде, спиртах, глицерине или бензоле. Строение мицелл этих золей мало изучено. Стабилизатором при получении всех этих систем служат окислы веществ, получающиеся при соприкосновении их паров с воздухом при высокой температуре. Образование в таких условиях окислов, обладающих свойствами электролитов, подтверждается заметным возрастанием электропроводности системы. Однако более стойкие-золи получаются в том случае, если в воду, в которой происходит конденсация паров, вводят стабилизующие электролиты. [c.245]

    Азотная кислота и ее соли. При описании свойств аммиака в 3 было отмечено, что он горит в кислороде с образованием воды и молекулярного азота. Однако в присутствии специального катализатора окисление аммиака кислородом может протекать с образованием воды и окиси азота. Современные промышленные способы получения азотной кислоты основаны именно па каталитическом окислении аммиака кислородом воздуха. Обычно смесь аммиака с воздухом, нагретую до 1- 700°, пропускают над катализатором (в качестве катализаторов используются сплавы на основе платины)  [c.301]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    При погружении инертного электрода (платина, золото) в раствор, содержащий окисленную и восстановленную формы вещества, может быть получен обратимый электрод. Такие электроды называются окислительно-восстановительными. Необходимо напомнить, что нет существенного различия между электродами этого типа и рассмотренными ранее электродами, такими, как металл в растворе своих ионов или неметалл в растворе своих анионов. Тем не менее некоторые редокс-системы имеют общие свойства, оправдывающие их отдельное рассмотрение. [c.28]


    Компактный рений представляет собой серебристо-белый металл, по внешнему виду напоминающий платину. Некоторые физические свойства рения приведены в табл. 4. Следует отметить зависимость свойств рения от чистоты и способов его получения и обработки. По ряду физических свойств рений приближается к тугоплавким металлам VI группы таблицы Д. И. Менделеева (молибдену, вольфраму), а также к металлам платиновой группы [157, 288, 469, 560]. [c.17]

    Зависимость свойств платинового катализатора от температуры сплавления была доказана рядом опытов. Температура определялась посредством термопары, вставленной в запаянную трубку стекла пирекс, которой в течение всего сплавления перемешивалась смесь. Окись платины, полученная при относительно низких температурах, обычно имеет светлокоричневую окраску и обладает большей склонностью переходить при промывании в коллоидальное состояние. Катализатор, полученный при промежуточных температурах, окрашен в коричневый, а полученный при 600°— в темнокоричневый цвет. Различные порщ1и окиси платины, полученные при одинаковых условиях, могут отличаться по цвету, но если соблюдать указанные температурные условия, то продукт всегда получается достаточно активным. [c.360]

    Следует подчеркнуть, что опыты по выяснению строения мускарина проводились с количествами порядка нескольких миллиграммов, так как мы располагали ограниченным количеством вещества. К сожалению, в 1955 г. удалось собрать так мало мухоморов, что дальнейшие опыты по расщеплению чистого мускарина не удавалось провести в течение длительного времени. Однако изучение химических свойств мускарина, выполненное в тот период [13], показало, что формулы III и IV подлежат уточнению. Каталитическим окислением мускаринхлорида кислородом в присутствии двуокиси платины получен мускарон (выделен в Виде тетрахлораурата). В инфракрасном спектре была обнаружена полоса при 1754 м , характерная для карбонильной группы в пятичленном циклическом кетоне. На основании этих данных был сделан вывод, что вторичная спиртовая группа в мускарине связана с тетрагидрофурановым ядром. В инфракрасном спектре кетона, соответствующего формуле IV, была обнаружена карбонильная полоса при 1709 Следовательно, группировка моноэфира гликоля должна содержать структурный фрагмент [c.441]

    Вентильные электроды изготавливались металлокерамическим способом из титанового порошка. В качестве материала для электрохимически активного слоя вместо платинированного порошка титана на первом этапе был применен порошок платины. Изучались свойства электрода, поведение его в насыщенном растворе ЫаС1, концентрация полученного хлора и выход хлора по току при разных методах подачи электролита в рабочую зону вентильного электрода. Напорная подача позволила при габаритной плотности тока = 3000 а м получить хлор с концентрацией около 100%. Обнаружено, что при наличии дефектов в запирающем слое последние проявляют себя с увеличением давления образующегося хлора, влияя на концентрацию хлора (в присутствии щелочи в прианодном пространстве) и выход хлора по току. [c.226]

    Соморджай и соавт. [236—239] для выяснения механизма каталитических превращений углеводородов на ступенчатых поверхностях платины пытались идентифицировать атомные центры монокристаллов Р1, ответственных за разрыв связей С—С, С—Н и Н—Н. Структура и состав поверхности монокристаллов Р1 были исследованы методами Оже-спектроскопии и дифракции медленных электронов. Полученные результаты сопоставлены с каталитическими свойствами Р1 ь реакциях О—Н-обмена, дегидрирования циклогексана в бензол и гидрогенолиза циклогексана с образованием н-гексана. [c.165]

    Изомеризацию легких парафиновых углеводородов с целью улучшения их антидетонационных свойств осуществляют в присутствии таких катализаторов, как платина, палладий, сульфид вольфрама и т. д. Процесс изомеризации протекает обычно довольно глубоко. Так, при изомеризации гексановой фракции, содержащей 50% н-гек-сана и 10% диметилбутана, получен продукт, состоящий из 50% диметилбутана и 10% н-гексана [49]. [c.21]

    Получение. Переработка самородной платины и содержащих платиновые металлы шламов состоит из многих химических операций. Это обусловлено близостью свойств платиновых металлов и потому. трудностью их разделения. Поскольку каждый из ПЛ.ЗТИН0ВЫХ металлов имеет свои области применения, необходимо выделение элементов в возможно более чистом виде использование сплава, содержащего все платиновые металлы, нецелесообразно. [c.573]

    Для получения платины и ее спутников руду освобождают от пустой породы путем отмывки водой. Выделенная смесь содержит от 60 до 90% платины и небольшие количества других платиновых металлов. Эту смесь растворяют в царской водке, причем все неблагородные металлы переходят в раствор в виде простых хлоридов, а платиновые металлы, за исключением осмия, в виде комплексных хлорокислот, осмий же остается в нерастворенном осадке. Дальнейшее отделение платиковы < мекылов друг от друга основано на ряде сложных химических опсфацнй, в которых используются свойства их комплексных соединений. [c.327]

    Из приведенных данных видно, что обработка паром не влияет на свойства катализатора с 0,1% Pt, но заметно увеличивает изомеризацию на втором катализаторе, что свидетельствует об участии в процессе кислотных центров Бренстедта. Рост конверсии в реакциях диспропорционирования и изомеризации в неопентан на катализаторе с 0,8% Р1 после обработки паром, вероятно, является причиной значительного увеличения выхода изопентана. Полученные данные не позволяют однозначно судить о механизме процесса. Сходство кинетических параметров для катализаторов с 0,1 до 0,8% платины (за исключением констант скорости и пред-экспоненциальных множителей реакции изомеризации) дает основание считать, что изомеризация н-Сз- изо-С протекает на платиновых центрах, активированных соседними кислотными центрами гидрогенолиз и превращение в неопентан, с одной стороны, и изомеризация — с другой, протекают на разных активных центрах. Обработка катализатора паром, по утверждению авторов, увеличивает изомеризующую активность катализатора. При содержании платины в катализаторе более 0,3% (масс.) реакция изомеризации усиливается. [c.323]

    В 1833 г. появилась адсорбционная теория Фарадея, созданная нм на основании его наблюдений над свойствами платины и сопоставления работ других исследователей. М. Фарадей установил, что платина в любой форме способна соединять водород с кислородом, при условии совершенной чистоты поверхности. Он считал, что в основе каталитических реакций лежат не электрические силы и не таинственная vis o ulta Берцелиуса, а природные свойства газовой упругости, связанные с проявлением сил притяжения, которыми обладают твердые вещества. Если поверхность чиста, т. е. нет загрязнений, уничтожающих силы притяжения, то газы на ней сгущаются. При этом часть молекул реагентов настолько сближается друг с другом, что возбуждается химическое сродство, уничтожаются эластические силы отталкивания и облегчается реакция. Полученные продукты реакции затем испаряются, освобождая поверхность, и процесс повторяется с другими молекулами. [c.91]

    При комнатной и более высоких температурах молекулы, связанные с поверхностью вандерваальсовыми силами, постепенно становятся хемосорбированными [51]. Эта особенность кислорода отчетливо обнаруживается в его способности катализировать (благодаря парамагнитным свойствам) реакцию орто-пара превращения водорода. Будучи адсорбированным на угле при низких температурах, кислород ускоряет эту реакцию, но если адсорбция происходит при более высоких температурах, то он оказывает отравляющее действие [132, 133], Следовательно, для протекания реакции кислорода с поверхностью угля требуется энергия активации. В случае адсорбции на металлах энергия активации может быть ничтожно малой или даже равна нулю. Па поверхности цезия при температуре жидкого воздуха кислород самопроизвольно образует хемосорбционный слой молекул поверхностного окисла. Вполне возможно, что этот хемосорбционный процесс не имеет диссоциативного характера (см. далее настоящий раздел). На пленке молибдена, полученной испарением металла в высоком вакууме, переход от физической адсорбции к хемосорбции требует более высоких температур. Этот переход может быть обнаружен по уменьшению электропроводности пленки в результате хемосорбции кислорода [78]. Аналогичная картина наблюдается при адсорбции кислорода на никеле и платине [53]. [c.83]

    Некоторые лиганды (их называют транс-активными) ослабляют воздействие центрального атома на свойства лиганда, находящегося в транс-положении по отношению к рассматриваемому лиганду, и приближают их к свойствам свободного лиганда. Примером проявления транс-влияния может служить получение изомерных диам-минов платины (II). При нагревании тетраамминов платины (II) с концентрированной НС1 обычно получаются транс-изомеры, а при действии аммиака на K2[Pt l4] — цис-изомеры  [c.377]

    Получение. Основной источник извлечения платиновых металлов - это самородная платина, а также шлам электролитического производства меди и никеля. Переработка самородной платины и содержащих платиновые металлы шламов состоит иа многих химических операций. Это обуслоалено близостью свойств платиновых металлов и поэтому трудностью их разделения. Кроме того, поскольку каждый из платиновых металлов имеет свои области примене- [c.544]

    В смешанных катализаторах, в которых компоненты находятся в соизмеримых количествах, могут образоваться новые, более активные соединения. При этом свойства смешанного катализатора не являются простой суммой свойств его компонентов. К числу модификаторов можно отнести и носители (трегеры), особенно часто применяемые для получения дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со). Роль носителей состоит в повышении активной поверхностп, увеличении термостойкости и механической прочности катализатора и т. п. В качестве носителей используют алюмосиликаты, оксиды алюминия, хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Так, например, дегидрирование метилциклопен-тана платиной, нанесенной на активированный уголь, ведет к образованию метилциклопентана и пентадиена, а при дегидрировании на Р1-А120з образуются бензол и циклогексан. Носители могут изменять активность и избирательность катализатора и т. п. Следовательно, роль носителя как модификатора свойств катализатора может быть очень большой, и его выбор является существенным при создании оптимального катализатора для данного процесса. [c.442]

    Одним из хорошо изученных комплексов платины, носящих имя его открывателя, является соль Цейзе К[Р1 С1з(С2Н4)]. Это окрашенное в желтый цвет соединение было синтезировано датским фармацевтом Цейзе еще в 1827 г. Соль Цейзе — одно из первых синтетически полученных металлоргапических соединений одним из лигандов в координационной сфере платины (И) здесь является этилен (донорные свойства проявляет двойная связь Н2С=СН2 [2, с. 125]). [c.161]

    Наибольшие трудности для теоретического истолкования представляет проблема специфичности действия катализатора/До сих пор еще неизвестно, какие именно свойства делают его пригодным для той или иной реакции. Например, хорошими катализаторами контактного получения H2SO4 наряду с платиной являются колчеданные огарки (остатки от обжига пирита, т. е. РегОэ с примесью СиО) и ванадиевокислое серебро (Ag3V04). Первый из этих катализаторов представляет собой металл, второй — смесь окислов, третий — соль. Казалось бы между ними нет ничего общего. -Между тем все они ускоряют один и тот же процесс, следовательно, сходство в характере действия активных центров все же есть. Чем оно обусловлено, остается пока неясным. [c.350]

    В гл. I мы указывали на то, что твердые тела с дефектами строения и в раздробленном состоянии являются лучшими катализаторами (губчатая платина, мелко раздробленный никель, оксид цинка состава ZnOi j. и т. д.). Все это и многое другое говорит о сильной зависимое ти свойств твердых тел от дефектов их строения, а значит, и от способов их получения. В главах IX и X мы остановимся на конкретных примерах зависимости состава и свойств полупроводниковых соединений от условий их синтеза  [c.147]

    В гл. I было отмечено, что твердые тела с дефектами строения и в раздробленном состоянии являются лучшими катализаторами (губчатая платина, мелко раздробленный никель, оксид цинка состава ZnOj- и т. д.). Это говорит о сильной зависимости свойств твердых тел от дефектов их строения, а значит, и от способов их получения. [c.182]

    Углеродные материалы. Графитовые электроды широко применяют в качестве анодов однако электроды нз чистого графита коррозионно менее устойчивы, чем платиновые электроды, поэтому срок их службы офаничен. Графит используют в виде графитированой ткани, что удобно в лабораторных исследованиях, или в виде стеклоуглерода, который во многих электрохимических процессах может заменить платину. Свойства стеклоуглерода зависят в основном от температуры, при которой он был получен [109] стеклоуглерод трудно поддается механической обработке. [c.186]

    В водном растворе разряд карбокснлатов возможен лишь на анодах из гладкой платины и иридия или из углерода. Если структура кислоты такова, что может образоваться продукт сочетания, то для получения его с оптимальным выходом следует выбрать анод нз платины, иридия или, в некоторых случаях, из стеклоуглерода. На аноде из графита или пористого уь-зерода многие карбоксилаты дают продукты, источником которых почти исключительно служит ион карбения [19—23]. Однако описаны и исключения нз этого правила [24, 25]. В неводиых растворителях роль материала электрода пе так велика, хотя и в этих случаях использование угольных анодов способствует механизму с участием иона карбения, а использование платины —радикальному механизму [19, 23]. Диоксид свинца, по-видимому, ведет себя при окислении ацетата аналогично углероду [26], но необходимы дополнительные эксперименты для того, чтобы выявить, насколько общим является это поведение [27]. Реакция Кольбе может Сыть проведена на стеклоуглероде и спеченном угле [26, 28] Для пиролитического углерода распределение продуктов зависит от тою, проводится ли реакция на гранях илн плоскостях электрода [28] это подтверждает, что раА.1ичия связаны с адсорбционными свойствами. [c.426]

    Вследствие превосходных свойств трифторида брома как растворителя при получении фторидов платиновых металлов он более полезен по сравнению с другими реагентами. Однако его можно применять не всегда. Хотя реакции с металлическим рутением с образованием сольвата пентафторид рутения — трифторид брома (1 1) [14] протекает настолько бурно, что металл раскаляется (если реакция не замедлена сильным охлаждением), все же ВгГз не может окислить платину выше 5 +. В самом деле, трифторид брома восстанавливает пентафторид платины или гексаплати-наты(У) [45 ] [c.390]

    Свойства. М 518,23. Оранжево-желтые гигроскопичные призмы. Растворимость при комнатной температуре 140 г в 100 мл воды. Хорошо растворимы в спирте. С солями NH4, К, Rb, s образует труднорастворимые желтые гексахлороплатинаты, растворимость которых снижается в указанном ряду катионов. Обычный продажный препарат ( 40% платины) содержит переменное количество гидратной воды и имеет состав, приближенно соответствующий формуле Н2Р1С1б-4,5Н20. Этот раствор служит исходным реактивом для получения других соединений платины и содержащих нанесенную платину катализаторов. [c.1812]


Смотреть страницы где упоминается термин Платина получение и свойства: [c.150]    [c.150]    [c.149]    [c.306]    [c.429]    [c.150]    [c.605]    [c.524]    [c.328]    [c.77]    [c.91]    [c.230]    [c.126]    [c.11]    [c.173]   
Органические синтезы через карбонилы металлов (1970) -- [ c.172 , c.174 , c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Платина, свойства

получение и свойства



© 2024 chem21.info Реклама на сайте