Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменные разделения раствора

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]


    Свойства соединений актиноидов (П1) (если не учитывать различий в окислительно-восстановительной активности) сходны и с соответствующими соединениями лантаноидов (П1). Сходство химического поведения ионов лантаноидов (И1) и актиноидов (III) в водных растворах обнаружено, например, при их ионообменном разделении. Сходство кристаллических структур, растворимости, характера гидролиза, состава кристаллогидратов и других свойств обнаружено также у однотипных соединений в твердом состоянии. Основное отличие соединений актиноидов (III) друг от друга обусловлено актиноидным сжатием (уменьшением размеров ионов Э + по мере увеличения заряда ядра в ряду Th — Lr). Свойства еще не полученных соединений актиноидов (III) можно предсказать на основании известных свойств однотипных производных лантаноидов (III). [c.559]

    Рассмотренный процесс пропускания через ионообменную колонку раствора, содержащего один сорт ионов, представляет наиболее простой, но практически важный случай ионного обмена в колонках. Этот процесс используют для замены в растворе одного иона другим, например, ионов Са + ионами N3+ при умягчении воды, для извлечения и концентрирования металлов, для разделения электролита и неэлектролита. Более общий случай применения ионитов в колонках — разделение двух и большего числа ионов. Такого рода процессы осуществляются с помощью ионообменной хроматографии. [c.686]

    Ионообменное разделение ниобия и тантала в растворе щавелевой кислоты [1456]. [c.292]

    Спектрофото метрический анализ и расчет результатов. Навеску 0,15 0,001 г остатка после ионообменного разделения растворяют в мерной колбе емкостью 100 мл в хлороформе, доводят объем до метки хлороформом. Определяют оптическую плотность 0 раствора в кварцевой кювете с толщиной слоя 5 мм при 278 нм, используя в качестве эталона хлороформ. [c.303]

    Разработанные методики [181] совместного определения свинца и олова в карбонатных породах и свинцово-цинковой руде основаны на предварительном ионообменном разделении РЬ(П) и 5п(1У), поскольку при совместном определении этих элементов в растворе не удается получить раздельные хронопотенциограммы. Рекомендуемый фоновый электролит—1М НС1. Относительная погрешность определения РЬ(П) в концентрации /г-10- моль/л составляет 1,8%. [c.123]


    Сюда же следует отнести влияние комплексообразования в растворе, имеющее большое значение в процессе ионообменного разделения РЗЭ, 2г и Н[ и т. д. [c.145]

    Для ионообменного разделения наибольшее значение имеют различия между величинами констант обмена. Наибольшие различия между константами обмена металлов на водород наблюдаются при промывании колонок раствором, 1 н. по соляной кислоте и 80%-ным по этанолу. Следовательно, использование солянокислых растворов, содержащих 80% этанола, наиболее перспективно для селективного катионообменного разделения переходных металлов четвертого периода. [c.135]

    Ионообменное, разделение обычно выполняют при применении водных растворов солей, которым придаются буферные свойства. Иногда добавляют в подвижную фазу небольшое количество смешивающихся с водой органических растворителей - метанола, этанола, ацетонитрила, тетрагидрофурана. Сила и селективность растворителя зависят от типа и концентрации буферных ионов и других солей, от значения pH и от вида и концентрации добавленных органических растворителей. [c.36]

    Несмотря на сравнительно отчетливую химическую специфичность группы рзэ, отделение их от многих примесей обычными способами представляет далеко не простую задачу, особенно в ряде отдельных случаев. Ионообменный метод позволяет успешно проводить такие трудные разделения, а также оказывается полезным и в более простых, часто уже ставших классическими случаях анализа. В этом отношении хроматографический метод обладает очевидными преимуш,ествами. Так, ионообменное разделение невесомых количеств элементов возможно без применения носителей высокое качество разделения достигается большей частью в одну стадию, так как при квалифицированном проведении анализа загрязнения разделяемых компонентов не происходит, что обычно неизбежно при выделении нерастворимых осадков из растворов ионообменный способ позволяет проводить комплексное разделение сложных смесей за одну операцию, тогда как при разделении в растворе потребовалось бы применить несколько последовательных операций и, наконец, в хроматографии удалось наиболее эффективно использовать процессы комплексообразования, которые до этого в практике разделений применялись очень ограниченно. [c.109]

    В присутствии хлоратов бромат-ионы определяют титрованием анализируемого раствора, подкисленного HG1 до концентрации 0,3 JV, раствором тиосульфата натрия. Титрант вводят через 1 мин. после добавления 2 г KJ на 100 мл раствора [489, с. 519]. Однако небольшие количества броматов таким способом определяют не очень точно, и тогда анализу целесообразно предпослать ионообменное разделение смеси (глава IV). [c.96]

    В ионообменной хроматографии применяют следующие буферные растворы ацетатный, фосфатный, цитратный, формиатный, аммиачный, боратный. Селективность разделения в ионообменной хроматографии зависит от концентрации и вида буферных ионов и органических растворителей, а также от pH среды. Ионообменное разделение проходит в пределах температур от комнатной до 60°С. Чем выше температура, тем меньше вязкость подвижной фазы и тем эффективнее разделение. Однако при высокой температуре стабильность колонки или образца может быть нарушена. Многие ионообменники выдерживают температуру до 60 °С, а некоторые полимерные катионообменники — даже до 80°С. Биохимические пробы принято разделять при низких температурах, часто при 4°С, хотя в современной ВЭЖХ при быстрых разделениях вероятность разрушения образца при 20-30°С резко снижается. Повышение температуры может привести к снижению к для всех компонентов образца, а снижение ионной силы подвижной фазы может привести к обратному явлению. [c.36]

    Ионообменные разделения проводятся почти исключительно на искусственно приготовленных ионообменных материалах — ионообменных смолах, представляющих собой микропористый органический скелет, который снабжен функциональными группами, способными отщеплять в водный раствор свои ионы н обмениваться ими с ионами в растворе. Таким образом, свойства ионообменников по существу являются свойствами обычных кислот и оснований разной силы в за- [c.92]

    Концентрация и pH промывающего раствора. Динамика ионообменного разделения определяется этими двумя факторами. Действие их всегда взаимосвязано, поскольку оба они регулируют концентрацию анионов комплексообразующего агента, представляющего собой большей частью соединение с частичной диссоциацией в водном растворе. Таким образом, для сохранения оптимальных условий изменение одного параметра влечет за собой неизбежное изменение другого. Так, например, трехкратному увеличению концентрации соответствует уменьшение pH примерно на 0,4 единицы и только при таком условии коэффициенты распределения рзэ остаются неизменными. К сожалению, по имеющимся материалам трудно оценить этот эффект из-за чрезвычайного разнообразия экспериментальных условий. Однако, имея в виду практическую важность предварительного выбора наилучшего процесса для разделения, в табл. 18 приводим полуколичественные данные для величин pH для 0,25М растворов некоторых комплексообразующих агентов. Если условно разделить весь ряд рзэ на тяжелые (Ьи — Но), промежуточные (Оу — Рт и V) и легкие (N(1 — Ьа), то переход при ионообменных разделениях от легких к промежуточным и от промежуточных к тяжелым рзэ будет соответствовать уменьшению величин pH примерно на 0,2 единицы. Изменение величин pH в зависимости от температуры непосредственно видно из таблицы. [c.102]


    Ионообменное разделение лантанидов и актинидов элюированием раствором аммонийной соли а-оксиизомасляной кислоты [19]. [c.211]

    Ионообменное разделение цинка, кадмия и ртути в водных средах и в водных растворах органических веществ [543]. [c.259]

    Ионообменное разделение редкоземельных элементов на смоле кальцит HOR с применением 0,1%-ного раствора смеси лимонной кислоты и цитрата аммония [1947]. [c.319]

    Очень эффективным способом разделения ионов металлов является ионообменное разделение хлоридных комплексов. Из растворов соляной кислоты извлекаются многие ионы металлов оптимальная концентрация НС1 зависит от природы извлекаемого иона. В большинстве случаев с ростом концентрации кислоты извлечение сначала растет до некоторого максимального значения, а затем падает. При высокой концентрации кислоты добавляемые хлорид-ионы начинают конкурировать за активные центры смолы даже с устойчивыми анионными комплексами металлов. К немногим металлам, которые практически не сорбируются из хлоридных растворов, относятся щелочные, щелочноземельные, редкоземельные элементы и никель. [c.488]

    Ионообменное разделение селена и теллура производят на смоле амберлит 1К-120 (размер зерна 60 меш) в растворе 0,3н. соляной кислоты 12]. Точно так же, применяя анионообменную смолу дауэкс-1, можно отделить теллур от сурьмы и олова 141]. [c.367]

    С целью возможности применения ионообменного разделения для больших молекул и ускорения скорости диффузии в смоле применяли катионообменную смолу с низкой степенью сшивания (дауэкс 50Ш-Х2). Окрашенные амиды количественно сорбируются на дауэксе 50W-X2 (Н+-форма) (200—400 меш) из вод-цо-органических растворов (80%-ного этилового или метилового спирта). Сорбированные соединения вымывают раствором соляной кислоты в водном этиловом или метиловом спирте. Влия- [c.299]

    Наиболее широко в технологии редких металлов ионный [ обмен применяют для разделения лантаноидов. Лишь с освое-> нием этого метода удалось получить количества индивидуальных 1 редкоземельных металлов, достаточные для изыскания возможностей их технологического применения. При пропускании раствора смеси солей РЗЭ через колонку, наполненную катионитом, происходит частичное разделение благодаря различной способности к ионцому обмену. Ионообменное разделение основано на том, что постепенное уменьшение радиуса иона (и соответствующее понижение основности) приводит к постепенному упрочнению связи с гидратной оболочкой. Поскольку в основе прочности связывания катионов с анионными группами ионообменников лежит, по-видимому, электростатическое притяжение гидратированного катиона к отрицательной группировке, то оказывается чем больше радиус гидратированного иока, тем менее прочно он связывается. В ряду РЗЭ, таким образом, ряд сродства к катиониту имеет вид Ьа +>Се2+>Рг2+>. .. >0у + > >уз+>НоЗ+>. .. >ЬиЗ+>5сЗ+. [c.168]

    Ионообменная хроматография основана на явлении обмена ионов между набухщим ионитом и раствором. Ионообменное разделение смеси ионов определяется различием их зарядов, а также ионной силой раствора. Внутри зерен ионита разделение зависит еще от скорости диффузии ионов, которая определяется плотностью ионита (частотой сщивок). [c.359]

    Спеддинг впервые предложил использовать для ионообменного разделения цитрат-ион. Лимонная кислота (СН2С00Н)гС(0Н)С00Н взаимодействует с ионами РЗЭ, образуя осадок нормальных цитратов, которые растворяются в [c.170]

    Механизм ионообменного разделения с НТА в качестве комплексообразователя аналогичен описанному выше с ЭДТА. В сорбционной колонке смола находится в Na - или NH4 -фopмe, в разделяющей — в Си - или гп -форме. Для элюирования применяют растворы НТА от 1 до 3% при pH 2,5—8,0 [108]. Растворы малой концентрации улучшают разделение, но уменьшают производительность. НТА приме- [c.125]

    Ионная хроматография. В основе метода лежит элюентное ионообменное разделение ионов на первой (разделяющей) колонке с последующим подавлением фонового сигнала элюента на второй (подавляющей) ионообменной колонке. Ионообменные колонки заполняют неподвижными фазами, содержащими ионогенные фуппы, способные к реакции обмена и обладающие высокой проникающей способностью. При анализе катионов колонку для разделения заполняют сульфированными катионитами низкой емкости, а подавляющую колонку — анионитом высокой емкости. В качестве элюентов используют растворы НС1 и HNO3, гидрохлорид пиридина. В качестве подвижной фазы — растворы карбоната и гидрокарбоната натрия. [c.247]

    Разработан метод ионообменного разделения смеси Re(VH), Mo(VI) и W(Vl) с применением слабоосновного целлюлозного ионита, основанный на их поглощении диэтиламиноэтилцеллюло-зой и последующем вымывании рения и молибдена раствором NH4S N и вольфрама щелочным раствором Na l [894]. [c.214]

    Как правило, повышение температуры улучшает ионообменное разделение разных ионов, и поэтому разделение сложных смесей выполняют при повышенных температурах. Сушествует много конструкций колонок для работы при повышенной температуре и давлении. Две простые конструкции колонок этого типа показаны на рис. 4.3. Колонка а снабжена водяной рубашкой для нагревания колонки дол-ребуемой температуры (нагретая вода поступает из термостатируемой бани). Аппарат б состоит из ионообменной колонки, которая помешена в закрытый сосуд, соединенный с резервуаром, содержащим промывной раствор, и с другим сосудом, заполненным жидкостью с подходящей температурой кипения. Жидкость нагревают до кипения внешним источником тепла. Колонка и поступающий промывной раствор нагреваются паром этой кипящей жидкости. [c.124]

    I Линейность электродной функции гетерогенного хлоросеребряного электрода с матрицей из силиконового каучука [551] в 0,1 ТкГ растворе хлорида сохранялась в интервале концентраций Вг 10 —10 Л/, а в отсутствие Л1ешающих ионов — до 5-10 М. Нитрат-ионы и более чем 10 000-кратные количества сульфат-ионов не влияют на нее, но иодиды очень сильно искажают ее ход. При одновременном присутствии трех галогенидов рекомендуется их ионообменное разделение, но иод можно независимо определить в отдельной порции раствора с помощью иодоселек-тивного электрода. [c.120]

    Ряд работ посвящен выделению кадмия в радиоактивно чистом состоянии путем многократного осаждения сульфидом [218], ионообменному разделению радиоактивных изотопов кадмия и других элементов [105], разделению d и Zn на бумажных хроматограммах [128J, получению d без носителя из циклотронных мишеней (четкое разделение d и Zn достигнуто при их соотношении от 30000 1 до 1 1000) [744]. Радиоактивный изотоп i d выпускается нашей промышленностью в виде раствора его солей — d (N03)2 и dGl 2 — с удельной активностью 1—10 мкюри г или мкюри мл. [c.139]

    Раствор трилона Б проходит через все четыре колонны. После четвертой колонны собирают в виде отдельных фракций комплексы редкоземельных элементов с трилоном Б. Каждую фракцию анализируют, и если какую-либо из них требуется дополнительно разделить, ее еще раз пропускают через колонки. Очищенные редкоземельные элементы осаждают щавелевой кислотой. Осадки сушат и затем прокаливают для перевода в окиси. Ионообменное разделение редкоземельных элементов протекает чрезвычайно медленно время, требуемое для прохождения одной зоны через колонны достигает четырех месяцев. Поэтому можно пускать в эксплуатацию даже не полностью смонтированную установку. [c.206]

    Майер и Топкиис нашли, что при ионообменном разделении празеодима и церия на колонке с г = 240, пики элюации соответствуют (Л г)макс. = 113 (для празеодима), (Л )макс, = 93 (для церия), а) Предполагая, что доля свободного объема колонки равна 0,30, оцените коэффициенты распределения празеодима и церия между смолой и раствором б) оцените D [см. уравнение (25-79)] и Е [см, уравнение (25-30)] для празео- [c.574]

    Метод ионной хроматографии [1] заключается в ионообменном разделении смеси ионов путем элюирования ее через колонку с разделяющим сорбентом, кондуктометрическом детектировании выходящего раствора с применением перед кондуктометрической ячейкой подавительной колонки, снижающей электропроводность элюента. Регистрацию показаний кондуктометра производят на диаграммной ленте. Для разделения анионов используют центрально-привитый анионит типа сульфированный анионит высокоосновный (САВ) [2 емкостью 0,02 мг-экв/мл и разрешающей способностью 3700 тарелок/м. В подавительной колонке используют микросферический сульфокатионит КУ-2 X 8 емкостью 2,5 мг-экв/мл. [c.185]

    Природные нуклеозиды разделяют ионообменной хроматографией в условиях, описанных ранее для фракционирования оснований, например на смоле дауэкс 1 в формиатной форме при элюировании формиатом аммония с pH 10,2 [73, 74] или на дауэкс 50 в нуклеозидном анализаторе [52]. Наилучшие результаты получены [75] при разделении нуклеозидов за счет ионной эксклюзии (исключения ионов) на колонке с катионитом аминекс А-6 [75] (рис. 37.7). В случае элюирования боратом натрия или калия (с концентрацией Ю- —Ю- М) при pH 8— 10 соединения, имеющие цыс-диольную группировку, образуют боратный эфир и приобретают вследствие этого дополнительный отрицательный заряд, что создает благоприятные условия для ионообменного разделения. При разделении рибонуклеозидов на сильном анионите (в боратной форме) в градиенте концентрации боратного буферного раствора (pH 9,2) и раствора хлорида натрия (0,01—0,1 М) компоненты смеси элюируются в следующем порядке цитидин, аденозин, уридин, гуанозин [76]. [c.47]


Смотреть страницы где упоминается термин Ионообменные разделения раствора: [c.69]    [c.60]    [c.120]    [c.95]    [c.206]    [c.304]    [c.531]    [c.136]    [c.592]    [c.128]   
Радиохимия и химия ядерных процессов (1960) -- [ c.392 , c.393 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы разделение



© 2024 chem21.info Реклама на сайте