Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий выделение на катоде

    Выделение водорода по схеме (19.8) — (19.9) наиболее вероятно при электролизе щелочных растворов или концентрированных растворов солей щелочных металлов и на катодах с высоким перенапряжением водорода (ртуть, свинец и др.). На внедрение щелочных металлов в катоды из свинца и кадмия указывают некоторые факты, установленные при изучении процессов электровосстановления органических соединений. Для металлов с низким перенапряжением водорода вторичное выделение водорода представляется менее вероятным. Однако некоторые исследователи полагают, что и при образовании водорода на платиновых катодах вся совокупность опытных данных лучше всего объясняется схемой (19.8) —(19.9). [c.396]


    Методами ИК-спектроскопии и вискозиметрии установлено, что в момент выделения частиц кадмия на катоде происходит хемосорбционное взаимодействие их с олигомером, а также имеет место частичная поликонденсация олигомера под воздействием образующихся частиц металла. [c.223]

    Таким образом, в случае присутствия кадмия изменение силы тока в зависимости от приложенного напряжения можно выразить кривой, приведенной на рис. 42. При малом напряжении, недостаточном для электролитического выделения кадмия на ртутном катоде, ток практически не идет. При увеличении напряжения до определенной величины начинается резкое увеличение силы тока. Это напряжение характерно для кадмия. Если в растворе присутствуют другие металлы, которые занимают при данных условиях другие места в ряду напряжений, то они будут восстанавливаться при других значениях приложенного напряжения. Поэтому полярографическая волна, т. е. скачкообразное увеличение силы тока, наблюдается при определенном, характерном для каждого металла напряжении тока, приложенного к электродам. Необходимо иметь в виду, что величина этого напряжения сильно зависит от присутствия в растворе других электролитов, а также от того, находится ли определяемый металл в виде хлорида, нитрата, аммиачного комплекса и т. п. Поэтому качественный полярографический анализ возможен только при строго определенных условиях среды. [c.212]

    Важной характеристикой материала катода является перенапряжение выделения водорода. В зависимости от его величины катодные материалы можно разделить на три группы с высоким перенапряжением (ртуть, свинец, цинк, олово, кадмий)  [c.16]

    Такое влияние плотности тока на состав катодного осадка должно быть объяснено следующим. Стандартный потенциал олова на 0,266 в электроположительнее потенциала кадмия. Однако выделение кадмия на катоде протекает с значительно меньшей поляризацией, чем выделение олова. Поэтому увеличение плотности тока сопровождается уменьшением его доли, приходящейся на выделение олова, и содержание его в осадке падает. [c.201]

    Из найденных величин Ер видно, что, подобрав соответствующим образом напряжение, можно сначала выделить на катоде и определить серебро, а затем кадмий. Для выделения серебра э. д. с. должна быть в пределах от 1,18 до 2,06 в, а для выделения кадмия — превыщать 2,2 в. На практике обычно серебро осаждают при напряжениях не выше 1,35—1,38 а, а кадмий при 2,6—2,7 в. Если бы исследуемый раствор кроме указанных солей содержал сульфат меди (Ер л 1,36 в), то можно было бы выделить из раствора сначала серебро, затем медь и, наконец, кадмий. [c.433]


    Электрохимические свойства марганца и электродные реакции. По электрохимическим свойствам марганец относится к той же группе металлов, что и цинк и кадмий, т. е. к металлам с малым перенапряжением и высоким тюком обмена (см. табл. IX-1), поэтому марганец склонен к образованию крупнозернистых осадков, к дендритообразованию. Достаточно высокое перенапряжение водорода на марганце все же не обеспечивает отрицательного потенциала выделения водорода и только при pH = 2 и более марганец удается выделить на катоде  [c.280]

    Для уменьшения сопротивления ячейки в испытуемый раствор вводят ацетат натрия МаАс, а для предотвращения гидролиза СИзСООН в ходе анализа раствор непрерывно перемешивают. В момент завершения процесса осаждения свинца резко падает величина тока. Последующее осаждение кадмия проводят на чистом платиновом катоде при потенциале отрицательнее 0,4 В. Величину потенциала при этом не контролируют. Для получения на катоде плотных осадков применяют плотности тока 0,01 А/см . Количество выделенного металла рассчитывают по привесу катода. Зная объем анализируемого вещества и массу выделенного металла, определяют содержание соответствующих солей в растворе. [c.108]

    Количественный полярографический анализ основан на тех же процессах, которые рассмотрены выше для качественного анализа. Испытуемый раствор помещают в электролизер и соединяют электроды с источником тока. При достаточном напряжении начинается электролитическое выделение данного металла, например кадмия на ртутном катоде. Дальнейшее увеличение напряжения приводит к возрастанию силы тока, причем характер зависимости между этими двумя величинами обусловлен некоторыми рассматриваемыми ниже физическими условиями проведения электролиза. [c.212]

    Таким путем определяют медь, свинец, висмут, кадмий и некоторые др. металлы. В качестве катода удобно брать металлическую ртуть, так как образование амальгам облегчает электролитическое выделение многих металлов. С другой стороны, на металлической ртути сильно затруднено выделение водорода, и поэтому легко избежать побочной реакции разложения воды под действием электрического тока. [c.221]

    Практически электрометаллургия кадмия в настоящее время ограничивается выделением его из кислых сульфатных растворов, содержащих, кроме того, заметное количество цинка. Электролиз осуществляется с применением алюминиевых катодов и нерастворимых свинцовых анодов. [c.497]

    Обычно на платиновом катоде выделяют металлы медь, цинк, кадмий, никель, олово, серебро, висмут, сурьму и др. Платина быстро покрывается слоем металла и выделение его протекает согласно уравнению (20.3). Осаждаемый металл должен быть плотным и хорошо сцепляться с металлической фазой электрода, чтобы не было механических потерь. Этим требованиям удовлетворяют также некоторые вещ,ества, выделяющиеся на аноде (РЬОг, Со Оз). [c.277]

    Это означает, что при напряжении внешнего источника постоянного тока в пределах от 1,39 до 2,03 В на катоде будет выделяться только медь, а при более высоких значениях напряжения—медь и водород. Точно также, подбирая соответствующие напряжения внешнего источника тока, производят раздельное выделение веществ, например из раствора серебра и меди, кадмия и меди. [c.155]

    Следует иметь в виду, что кислотность раствора в результате анодного процесса увеличивается. Это иногда замедляет выделение металла на катоде. Так, кадмий выделяется электролизом из слабого сернокислого раствора, однако чрезмерное повышение кислотности препятствует его количественному осаждению. В этом случае необходимо частично нейтрализовать раствор, прибавив, например, ацетат натрия. [c.228]

    Большое положительное значение перенапряжения можно показать на примере электрохимического выделения водорода. Электродные потенциалы цинка, кадмия, железа, никеля, хрома и многих других металлов в ряду напряжения имеют более отрицательную величину равновесного потенциала по сравнению с потенциалом водородного электрода. Благодаря перенапряжению водорода на указанных выше металлах при электролизе водных растворов их солей происходит перемещение водорода в ряду напряжений в область более отрицательных значений потенциала и - становится возможным выделение многих металлов на электродах совместно с водородом с большим выходом металла по току . Так, выход по току при электролизе раствора 2п504 более 95%. Это широко используется в гальванотехнике при нанесении гальванических покрытий и в электроанализе. Изменением плотности тока и материала катода можно регулировать перенапряжение водорода, а значит и восстановительный потенциал водорода и реализовать различные реакции электрохимического синтеза органических веществ (получение анилина и других продуктов восстановления из нитробензола, восстановление ацетона до спирта и др.). Перенапряжение водорода имеет большое значение для работы аккумуляторов. Рассмотрим это на примере работы свинцового аккумулятора. Электродами свинцового аккумулятора служат свинцовые пластины, покрытые с поверхности пастой. Главной составной частью пасты для положительных пластин является сурик, а для отрицательных — свинцовый порошок (смесь порошка окиси свинца и зерен металлического свинца, покрытых слоем окиси свинца). Электролитом служит 25—30% серная кислота. Суммарная реакция, идущая при зарядке и разрядке аккумуляторов, выражается уравнением [c.269]


    В качестве примера рассмотрим определение меди и кадмия в металлическом цинке. Если в раствор, содержащий соль цинка и примеси солей меди и кадмия, погрузить цинковый анод, соединенный с платиновым катодом, то на катоде выделяются и медь, и кадмий. Если же взять железный анод, то на платине выделится только медь, так как она более электроположительна, чем железо. Ионы кадмия при этом останутся в растворе, так как кадмий более электроотрицателен, чем железо. После выделения меди посредством железного анода можно выделить кадмий, применив цинковый анод. [c.232]

    Для разряда ионов водорода на зеркальной поверхности ртути требуется значительно большее напряжение, чем для разряда на платине. Так, на платиновых электродах водород выделяется (из растворов кислоты) при напряжении 1,7 В, а на ртутном катоде это напряжение возрастает до 2,5 В и больше. В связи с этим на ртутном катоде легко осаждаются электроотрицательные металлы (цинк, кадмий, висмут и др.). Это осаждение происходит без выделения водорода, которое в случае твердых электродов приводит к получению губчатых осадков и затрудняет выделение этих металлов. [c.233]

    Со 2649,9) определению не мешают Pt, Rh, Pd, Ir и Ru. Описано выделение золота на активированном угле при действии на раствор анализируемого объекта диэтилдитиокарбамината. Для полноты выделения золота к пробе прибавляют сульфид кадмия и пропускают сероводород готовый сульфид кадмия можно заменить растворимой его солью. Метод позволяет определять [407] золото с чувствительностью 1-10 % по линии Ли 2675,95 А в хлоридах, карбонатах и нитратах щелочных (Li, Na, К, Rb, s) и щелочноземельных (Са, Sr, Ва) металлов и магния. Чувствительность можно повысить [408, 409] до 2-10 % Ли, применяя газоразрядную трубку с полым катодом. [c.180]

    П. Н. Коваленко и А. Ф. Аръева [109] разработали метод электролитического разделения и определения висмута и кадмия без контроля катодного потенциала. Оптимальные условия для отделения висмута от кадмия следующие напряжение 1,5 в, температура кипения, концентрация цитрата натрия около 0,043 М, тартрата натрия около 0,045 М и азотной кислоты от 0,0325 до 0,070 н. Полученный раствор должен гметь pH 4,8—3,8. После выделения висмута из того же раствора выделяют кадмий на катоде, покрытом висмутом, при напряжении 2,5 в. Определение висмута длится 15— 17 мин., определение кадмия — 7 мин. Максимальная ошибка [c.313]

    К металлам с высоким перенапряжением водорода относятся в первую очередь ртуть и свинец, а также цинк, олово, кадмий. Выделение водорода на ртути происходит при столь отрицательных потенциалах, что из водных растворов возможен разряд ионов щелочных и щелочноземельных металлов с образованием амальгам. При этом электрохимические свойства ртутного катода меняются повышается перенапряжение водорода, значения потенциала нулевого заряда резко сдвигаются в отрицательную сторону, приближаясь к таковы 1 для амальгам— (1,7—2,0 В) [81, 87]. На ртутном катоде может устанавливаться потенциал 2,0 В, что позволяет восстанавливать самые трудновосстанавливаемые соединения. Очень отрицательный потенциал нулевого заряда ртутного катода в растворах, содержащих катионы щелочных металлов, создает условия для адсорбции органических соединений и образования гидродимерных продуктов. [c.49]

    В своей более поздней работе эти авторы определяли кадмий микроаналитически. Катодом служил 1 мл ртути в сосуде площадью 1 см . Предварительный электролиз они проводили поляризацией катода в индифферентном электролите (НгЗО ) постоянным током при таком отрицательном потенциале, при котором происходило одновременное выделение водорода. Последний, пробулькивая через раствор, окружающий электрод, способствовал передвижению деполяризатора к электроду. Чем больше плотность постоянного тока, используемого при предварительном электролизе, тем интенсивнее перемешивается раствор выделяющимся водородом. [c.195]

    Потенциалы выделения меди и кадмия на катоде значительно различаются на фоне щавелевокислых растворов. Это дает возможность полярографически определять кадмий после удаления меди путем электролиза. Оставшиеся неудаленными небольшие, соизмеримые с количеством кадмия количества меди не мешают определению. [c.196]

    Иззестно, однако, что потенциалы отдельных пар зависят не только от природы металлов, но и от концентраций их ионов в растворе. Поэтому, изменяя концентрации путем связывания соответствующих ионов в те или иные комплексы, иногда удается изменить и порядок их выделения при электролизе. Например, выше было указано, что медь из смеси растворов USO4 и dS04 выделяется в первую очередь. Если же прибавить к раствору достаточное количество K N, то можно при напряжении 2,5 в количественно выделить на катоде кадмий, тогда как медь целиком останется в растворе. Причина этого заключается в образовании катионами обоих металлов комплексных ионов [ d( N)4] ( иест = 7,8 10" ) и [ u( N)4P" (/Снест = 5,0 10 ). Соответственно меньшей величине К ест медного комплекса концентрация [c.433]

    Изучение кинетики электроосаждения металлов связано также с затруднениями, возникающими в связи с неустойчивостью во времени потенциала катода. Изменение потенциала и электродной поляризации вызывается не только изменением активной иоверхности и истинной плотности тока, по и другими причинами. Особенно заметно изменение потенциала со временем при выделении металлов на чужеродных электродах, когда электролиз приводит к образованию новой металлической фазы, наиример ири осажденпи кадмия, меди, серебра, ртути и ряда других металлов на платиновом катоде. Впервые это явление было обнаружено еще в 1910 г. Лебланом, Изменение величины нерена-иряжения со временем наблюдается при выделении металла и на одноименном катоде. На рис. 22.3 яриведена типичная кривая поляризация — время, полученная при выделении серебра на серебряном катоде. [c.455]

    Ранее считалось, как само собой разумеющееся, что поверхность катода всегда отрицательна, причем тем более отрицательна, чем менее электроположителен электродный металл. Эта точка зрения, сохранившая известное распространение и в настоящее время, ошибочна. Заряд поверхности металла не определяется ни той ролью, какую металл играет в электрохимическом процессе (т. е. является ли он катодом или анодом), ни его электродным потенциалом в данных условиях. Заряд поверхности электрода можно оценить, если воспользоваться предложенной Л. И. Антроповым приведенной, или ф-шкалой потенциалов. Потенциал электрода в ф-шкале представляет собой разность между его потенциалом II данных конкретных условиях (например, в процессе электроосаждеиия металла) и соответствующей нулевой точкой. Потенциал электрода в приведенной шкале служит мерой заряда поверхности и позволяет предвидеть, адсорбция каких именно ионов будет наиболее вероятной в данных условиях. Это положение можно проиллюстрировать на примере катодного выделения никеля, цинка, кадмия н сви1ща из растворов их простых солей. Все эти металлы выделяются при отрицательных потенциалах (по водоро/ ной шкале), которые в обычных режимах электролиза имеют следующие значения —0,80 В (Ni), —0,80 В (Zn), —0,45 В ( d) и —0,15 В (РЬ). Их потенциалы в приведенной шкале, т. е. заряды, можно оценить, воспользовавшись данными о нулевых точках этих металлов (см. табл. 11.6)  [c.469]

    Электролитическое выделение металла из раствора называется э л е к т р о э к с т р а к ц и е й. Руда или обогащенная руда — концентрат (см. 192)—подвергается обработке определенными реагентами, в результате которой металл переходит в раствор. После очистки от примесей раствор направляют на электролиз. Металл выделяется на катоде и в большпиствс случаев характеризуется высокой чистотой. Этим методом получают главным образом цинк, медь и кадмии. [c.300]

    В нас. р-р dSOi (750 г/л) помещают палочку металлического d (анод) и Pt-проволоку или пластинку (катод), добавл. несколько капель H2SO4 (конц.). Электролиз проводят при перемеш., катодной плотности тока 0,01 а/см и при напряжении 3—4 в. Выделенный кадмий промывают. Сохраняют под водой [c.28]

    Определить время, теоретически необходимое для полного выделения на катоде кадмия из V мл раствора Сс1504 указанной нормальности, если электролиз проводился при силе тока 0,1 А и выход по току составил 100%  [c.166]

    Большое влияние на структуру осадков оказывает комплексообразование йонов. Как правило, при выделении на катоде металлов из растворов некоторых комплексных солей получаются мелкозернистые осадки, особенно при избытке комнлексообразующего лиганда. Характерным примером таких растворов, применяемых для электролитического покрытия металлами, являются растворы цианистых солей меди, серебра, золота, цинка, кадмия и др. Мелкозернистую структуру осадков, получаемых из этих растворов, обычно связывают с величиной катодной поляризации, которая в цианистых растворах при достаточном содержании свободного цианида значительно больше, чем в кислых растворах солей тех же металлов. [c.340]

    Следует иметь в виду, что кислотность раствора в результате анодного процесса увеличивается. Это иногда замедляет выделение металла на катоде. Так, кадмий выделяется электролизом из слабосернокислого раствора, однако чрезмерное повышение кислотности препятствует его количествен- [c.198]

    Очищенный и взвешенный катод в виде сетки из платиновой проволоки и анод из платиновой проволоки погружают в сернокислый раствор сульфатов меди и кадмия. Анод помещают в центр проволочного цилиндра, верхний край которою должен подниматься над урмнем раствора на 1 ом. Об окончании выделения меди судят по отклонению силы тока до минимального остаточного значения (почему ). Окончание выделения можно также контролировать, добавив небольшое количество дистиллированной воды. Тогда оставшийся еще гладким край платинового цилиндра покрывается растворам. Если на нем через некоторое время не образуется красного налета (Си), то сосуд для электролиза (стакан) можно осторожно удалить, опустив его вниз. Затем электроды промывают, подставляя стакан с дистиллированной водой, чтобы полностью погрузить электроды в воду. Через несколько минут его можно удалить. Только теперь можно отключить яапряжеиие (почему ). [c.265]

    Для удаления воды электроды погружают в ацетон и катод затем высушивают на воздухе или на несколько минут помещают его в сушильный шкаф при 100 °С. Заключите.пьное взвешивание позволяет определить количество меди по увеличению массы электрода. Для выделения кадмия анод и покрытый медью катод (гладкая платина легко легируется некоторыми металлами, например Сё, Н , 5п, 2п, В , и очень трудно очищается после этого) снова погружают в электролизуемый раствор. Источниками напряжения служат два последовательно включеиных аккумулятора силу тока 0,5 А устанавливают с помощью регулируемого сопротивления. (Каково должно быть напряжение на клеммах для количественного выделения С(1 Как можно получить такое напряжение в водном растворе ) [c.265]

    Введение поверхностно-активных веществ и коллоидов в электролит резко изменяет характер электрокристаллизации металла. Адсорбируясь на поверхности катода, поверхностноактивные вещества создают затруднения для проникновения разряжающих ионов металла, повышая энергию активации. Это приводит к значительному увеличению поляризации и, как следствие, к образованию мелкокристаллической структуры. Такие металлы, как олово, свинец, кадмий, которые при выделении на катоде из растворов их простых солей образуют игольчатые, не связанные между собой отдельные кристаллы, в присутствии повархностно-активных веществ образуют компактные плотные слои металла, обладающие высокими антикоррозионными защитными свойствами. В ряде случаев даже при не очень значительном увеличении поляризации поверхностно-активные вещества способствуют формированию мелкокристаллической структуры. [c.365]

    Из рис. 202 следует, что при восстановлении таких соединений наиболее эффективными будут катоды из цинка, свинца, таллия и кадмия, точки нулевого заряда которых наиболее сильно сдвинуты в катод- ную тopo y, а перенапряжение выделения водорода значительно. [c.447]

    Процесс этот имеет прикладное значение, поскольку глиоксале-вая кислота является исходным сырьем для синтетического получения ванилина и ванилаля. Электрохимическое восстановление щавелевой кислоты сильно зависит от природы металла, используемого в качестве катода. На катодах с низким перенапряжением выделения водорода — никеле, платине, восстановления не наблюдается, в то время как на катодах из ртути, свинца, амальгамы таллия и кадмия процесс восстановления протекает без существенных затруднений. Наиболее эффективно процесс осуществляется на кадмиевом катоде, потенциал точки нулевого заряда которого, как показано на рис. 202, наиболее сильно сдвинут в электроотрицательную сторону, а перенапряжение выделения водорода велико. [c.448]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде. После чего электрод с осадком взвешивают и определяют массу металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием плотного нерастворимого осадка, пригодного для грави- [c.110]

    В результате электроосаждения на катоде происходит выделение новой твердой фазы. Такой процесс протекает с определенной задержкой, которую можно наблюдать на примере обычной кристаллизации. Его скорость зависит от числа зародышей кристаллизации и от скорости их роста. Задержка при образовании первого зародыша кристаллизации была обнаружена при электроосаждении кадмия на платиновом катоде. Потенциал катода в первый момент после Е ключения поляризующего тока резко падает, после чего снова поднимао.тся и в продолжение электролиза при постоянной силе тока не изменяется. Это первоначальное падение потенциала указывает на наличие дополнительной поляризации, необходимой в связи с образованием первых центров кристаллизации. [c.169]

    Таким способом определяют медь, свинец, кадмий, висмут и другие металлы. В качестве катода удобно применять металлическую ртуть, так как образование амальгам облегчает электролитическое выделение многих металлов. С другой стороны, на металлической ртути сильно затруднено выделение водорода, поэтому легко избежать разложения воды электрическим током. Данным методом можно анализировать и смесь катионов нескольких металлов, выделяя из раствора электролизом сначала более электрополо- [c.512]

    Кроме комплексных анионов, е1 состав которых входит металл, восстанавливающийся на катоде, в электролите могут присутствовать комплерссы катионного характера. К таким электролитам, применяемым в гальваностегии, относятся растворы аммиачных солей (аммиакатов) цинка, кадмия и меди, аминокомплексных соединений с органическими лигандами. В некоторых случаях восстановление этих ионов не требует большой поляризации катода, так как они разряжаются как обычные гидратированные или сольватированные ионы. Константа нестойкости этих комплексов больше, чем цианидных комплексных анионов В присутствии избытка цианида. Выделение металла, например, [c.244]

    Роль материала катода очень велика, хотя далеко не всегда может быть объяснена н, тем более, предсказана В протоноДо-норных растворителях приходится считаться с реакцией выделения водорода, приводящей к снижению выхода по току в процессе восстановлеиня галогенорганического соединения В соответствии с этим в протонодонорных средах эффективнее катоды с высоким перенапряжением водорода (ртуть, свинец, цинк, кадмии, графит) в апротонных растворителях различия в поведении Металлов с высоким и низким перенапряжением водорода сглаживаются, если не исчезают вовсе. В любых растворителях возможна предшествующая химическая реакция с материалом электрода. Образование металлорганических соединений (как до, так и после переиоса электрона) в сильной степени обусловлено природой металла электрода для предотвращения этой реакции, по-видимому, удобнее всего использовать катоды нз графита или стеклоуглерода. Скорость восстановления галоген-замещеиных соедниепин, как уже отмечалось, зависит от природы металла электрода (см., иапример, [186—189]). [c.284]


Смотреть страницы где упоминается термин Кадмий выделение на катоде: [c.342]    [c.202]    [c.212]    [c.239]    [c.115]    [c.196]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.424 , c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Катод



© 2025 chem21.info Реклама на сайте