Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции конкуренция

    В этих методах применяются мечение антигенов или антител и иммобилизация на твердой подложке одного из реагентов [34] под таким названием разработано много вариантов [113]. Иммобилизация выполняется на дне пробирок или чаще в микрокюветах, вмонтированных в пластиковые планшеты. Для мечения часто используют пероксидазы, щелочные фосфатазы, глюкозооксидазу. Возможно использование реакций конкуренции между мечеными и немечеными реагентами пример такого рода схематически представлен на рисунке 4.9. Можно описать еще один вариант метода, не основанный на реакциях конкуренции  [c.106]


    Простой конкуренцией называют такой процесс, при котором каждая из реакций протекает с одними и теми же исходными веществами при воздействии одного и того же активирующего агента и по той же схеме, что и при раздельном проведении реакции. Конкуренция может, однако, привести к различным модификациям коэффициентов распределения реакционных, каталитических или прочих форм. [c.243]

    В первой части настоящей книги я пытаюсь путем анализа разнообразного экспериментального материала для реакций замещения и присоединения (связь го и д, активность радикалов, направления различных цепных реакций, конкуренция этих направлений, реакции бирадикалов) показать, что тепловой эффект радикальной реакции действительно имеет решающее значение. Отсюда следует, что тщательная проверка указанных соотношений между ж д для большого круга реакций свободных радикалов является крайне необходимой. Только после этого можно установить закономерности в изме- [c.328]

    В этом случае наличие критических явлений обусловлено, так же как и в гомогенно-каталитических реакциях, конкуренцией разветвления и обрыва цепи на катализаторе. Схема процесса может быть записана следующим образом  [c.133]

    При анализе чувствительности исследуют влияние параметров, например - скоростей элементарных реакций на выходные параметры модели, например - на период индукции. Анализ чувствительности предназначен для идентификации лимитирующих стадий. Эти стадии являются ключевыми реакциями в основных маршрутах реакций. Конкуренция между различными маршрутами и соотношение между основными реагентами изучается с помощью анализа скоростей расходования (производства) реагентов. Анализ скоростей производства различных реагентов позволяет определить вклад различных элементарных реакций в производство (расходование) реагентов. [c.215]

    Кислота НА — любая сильная кислота. Для того чтобы объяснить ингибирующее действие добавок оснований А, принимается, что реак ции 1 и 2 находятся в равновесии (т. е. идут быстрее, чем следующая стадия) Для реакционноспособных АгН, когда скорость не зависит от концентрации, реакция 5 идет быстрее, чем реакция 4, так что лимитирующей стадией является реакция 3. Для чрезвычайно нереакционноспособных АгН, таких как этилбензоат, лимитирующей становится стадия 5, а для АгН с промежуточной реакционной способностью найден более сложный закон, определяющийся конкуренцией реакции 4 и 5. Если применить метод стационарного состояния к N0 и [АгН-N02]" , выражение для скорости принимает вид [c.503]


    Ингибирование и конкуренция реакций 54i [c.543]

    Ингибирование и конкуренция реакций на поверхности [c.543]

    Ингибирование и конкуренция реакций 545 [c.545]

    В относительно холодной неизотермической плазме, например тлеющего разряда, в которой температура электронного газа более или менее значительно превышает температуру молекулярного газа, концентрации частиц, из которых некоторые могут быть химически активными, определяются не термодинамическим равновесием, а стационарным состоянием, возникаю-пщм в результате конкуренции различных процессов образования и расходования частиц, В зависимости от соотношения скоростей противоположно направленных процессов концентрации как первично активных частиц, так и конечных продуктов внутри самой плазмы могут значительно превышать термически равновесные. В этом случае уместно говорить о специфической электрической активации реакций, которая и будет рассмотрена в данном параграфе. [c.251]

    Однако против этой схемы было выдвинуто много возражений. Мы уже видели, что гидроксид по своей природе экстрагируется с трудом. Это связано как с его низкой растворимостью, так и с малой константой экстракции. Эти трудности увеличиваются еще больше, если в конкуренцию за каталитическое количество имеющегося четвертичного аммониевого катиона вступает какой-либо более липофильный анион, например галоген. По мере образования иона галогена в ходе реакции экстракция гидроксида будет все больше и больше ингибироваться. Правда, это рассуждение не имеет общего характера , например, оно, по-видимому, не пригодно для хлорид-иона. Кроме того, равновесие депротонирования между Н—Sub и гидроксидом четвертичного аммония в органической фазе сильно сдвинуто влево из-за большой разницы в кислотности (субстрата и воды). [c.58]

    RO2- одного и того же порядка, конкуренция между этими реакциями определяется прежде всего отнощением концентраций [In-]/[R02-]. [c.108]

    Всякая наблюдаемая нами реакция на самом деле является результатом конкуренции прямой и обратной стадий. Если прямой процесс идет с большей скоростью, то это приводит к накоплению продуктов реакции, и мы говорим, что реакция самопроизвольно протекает в прямом направлении. Если быстрее протекает обратный процесс, то происходит накопление реагентов, и мы говорим, что самопроизвольной является обратная реакция. Если скорости прямого и обратного процессов одинаковы, то при этом не наблюдается результирующих изменений ни одного из компонентов реакции. Это и есть условие химического равиовесия. [c.197]

    Ситуация, однако, зависит от условий процесса. С ростом давления величина ii n очень быстро растет, поскольку рост скорости тримолекулярной реакции 11 пропорционален N (N — число частиц), в то время как, нанример, рост скорости бимолекулярной реакции 5+ пропорционален N . С увеличением температуры начинают также включаться конкурирующие по продолжению реакции I6, П, 25. Фактически конкуренция разветвление — обрыв имеет место не между реакциями 3 и 11, а между реакцией 3, с одной стороны, и продолжениями И 15, И -> 16, И 17, И 18, И 19, И 25 — с другой. При этом если маршруты И 16, И 17, И 19 преобладают, то реакция 11 должна квалифицироваться как реакция продолжения через малоактивный радикал НО2, а если преобладают маршруты И -> 15, И -> 18, И->25, то это — реакция безусловного обрыва, так как эти маршруты приводят к устойчивым конечным продуктам. [c.275]

    Подчеркнем, что реакция 16, являясь формально нейтральной в конкуренции разветвление — обрыв, фактически стимулирует процесс заменой малоактивных радикалов на активные. Реакции 19, 25 также влияют на точность определения ки, ки, но их роль незначительна вследствие низких концентраций О и ОН. Однако в принципе их необходимо учитывать. [c.283]

    Эти обобщения хотя и дают общую характеристику процессов, протекающих при жидкофазной гидрогенизации, не раскрывают взаимосвязи или взаимной конкуренции отдельных реакций, а также важные детали химизма превращений компонентов. [c.164]

    Эта реакция, как и бимолекулярная, эндотермична 9=2/)к н—570 кДж/моль. Для углеводородов с /)к н< <350 кДж/моль тримолекулярная реакция более выгодна, чем бимолекулярная. Экспериментально тримолекулярная реакция доказана для тетралина и индена (см. табл. 2.1), а также для ряда непредельных и кислородсодержащих соединений [32]. Следует ожидать, что тримолекулярная реакция будет превалировать над бимолекулярной для углеводородов с 330 кДж/моль [32]. Предэкспоненциальный множитель для трнмолекулярной реакции, естественно, ниже чем для бимолекулярной реакции из-за более высокого отрицательного значения энтропии активации. Поэтому для углеводородов с Оц-н в диапазоне 330<0р-н<350 кДж/моль термохимически выгоднее тримолекулярная реакция, но протекает быстрее бимолекулярная. Для углеводородов со слабыми связями С—И (0к-н<330 кДж/моль) будет преобладать тримолекулярная реакция. Конкуренция между этими двумя реакциями зависит от стерических факторов, которые в большей степени препятствуют протеканию три-, чем бимолекулярной реакции, от полярности среды, которая благоприятствует протеканию тримолеку-лярной реакции, и от температуры, так как при ее повыщении ускоряется в большей степени бимолекулярная реакция (для Дя-н<350 кДж/моль), чем тримолекулярная. [c.39]


    Механизм ядерных реакций. Конкуренция ядерных процессов. Реакции под действием а-частиц, протонов и нейтронов во многом сходны между собой. Это связано с однотипным механизмом нх протекания. Согласно Бору, ядерные реакции протекают в два этапа. На первом этапе происходит слияние взаимодействующих ядер с образованием нового возбужденного ядра С, называемого составным или комиаунд-ядром А + а = С. Энергия возбуждения многократно перераспределяется между нуклонами. Через определенный промежуток времени на одной частице или группе частиц может сосредоточиться энергия, достаточная для ее вылета. Тогда осуществляется второй этап — распад возбужденного составного ядра = B-f 6. Способ распада составного ядра зависит от его физико-химических свойств и энергии, но не зависит от способа образования. Если после вылета одной частицы из возбужденного ядра оставшаяся энергия достаточно велика, возможен вылет второй, третьей и т. д. частиц. При этом ядро может распадаться различными путями с определенной вероятностью каждого энергетически возможного вида распада. Так, например, при бомбардировке ядер алюминия быстрыми нейтронами (10 МэВ) конкурируют следующие ядерные реакции  [c.418]

    Крупным недостатком эмпирических индексов и правил является их ограниченность. Они применимы лишь для узкого круга однотипных реакций. Так, отмеченная выше корреляция между спиновой плотностью на реакционном центре радикала и константой скорости (или энергией активации) его реакции нарушается, когда даже в однотипной реакции (отрыв атома водорода от углеводородов) участвуют разные радикалы — феноксилы и нитро-ксилы [8]. Эмпирические индексы и правила очень неточны, пред-сказательность их очень ограниченна. Они полезны лишь для грубых сравнений, когда надо оценить основное направление реакции, конкуренцию разных реакций, относительные выходы продуктов и т. д. Именно в таком сравнительном аспекте простота эмпирических правил и индексов оказывается полезной в радикальной химии. [c.121]

    Циклы. Количество циклов, которое необходимо провести для амплификации требуемой последовательности, обратно пропорционально количеству копий матрицы в реакционной смеси. Обычно используют такое число копий, чтобы видимый продукт образовывался после проведения 25-50 циклов. Во время ПЦР наблюдается экспоненциальная фаза увеличения числа синтезированных молекул дцДНК, которая продолжается до тех пор, пока это число не достигнет -1012. Затем скорость накопления продукта резко уменьшается. Существует несколько основных факторов, которые препятствуют экспоненциальному накоплению продукта, как это должно происходить теоретически. Из них следует упомянуть истощение субстратов реакции (праймеров или НТРз), стабильность компонентов реакционной смеси, ингибирование ПЦР конечным продуктом реакции, конкуренцию за субстраты неспецифическими продуктами ПЦР или димерами праймеров, повторный отжиг продуктов ПЦР, препятствующий элонгации праймеров, неполную денатурацию в присутствии большого количества продукта ПЦР и ряд других. С учетом этих факторов из-за эффекта плато увеличение числа циклов само по себе не приводит к возрастанию специфичности ПЦР или накоплению специфического продукта. Для повышения специфичности ПЦР необходимо понижать число циклов и уменьшать продолжительность их отдельных сегментов (время денатурации, отжига и элонгации праймеров). Однако для повышения эффективности ПЦР при амплификации больших участков матрицы [c.202]

    Когда происходит химическая реакция, это распределение нарушается реакцией, и в общем можно ожидать, что стационарная концентрация возбужденных молекул будет ниже, чем при равновесии. Лиидеман [13] первым предложил схему, которая позволяет оценить влияние реакции на это распределение. Его схема включает конкуренцию двух путей исчезновения возбужденных молекул — химической реакции и дезактивации при столкновении  [c.202]

    Полученную зависимость авторы объясняют конкуренцией между адсорбцией ХНз и Па. При этом предполагается, что КНз всегда более сильно адсорбируется (Л NHз(NHз)> [71па(Ва)] 2, а молекулы Ва адсорбируются так же, как -атомы В. Механизм реакции можно представить следуюп(им образом  [c.544]

    Аналогичная зависимость скорости реакции была бы в том случае, если бы никакой конкуренции процессов сорбции частиц N113 и На не было [16]. Эта зависимость не дала бы максимума скорости с увеличением концентрации NHз. [c.544]

    Авторы работы [41] предположили, что обмен протекает с участием фенильных радикалов, а реакция присоединения идет при непосредственном взаимодействии молекул и.) (или двух атомов В) с бензолом. Интересно отметить, что экспериментальЕше данные хорошо согласуются с предположением о том, что Вз и Сс,Нв адсорбируются на участках поверхности без конкуренции и лимитирующей стадией обмена является реакция РЬ-Н-З - 8 РЬ-8- -Н-8. Аналогичный механизм в случае этилена хорошо объясняет реакцию присоединения (но не обмена). [c.550]

    Если эти рассуждения справедливы и механизм реакции зависит от конкуренции двух эффектов — энергии торсионного напряжения и каталитических пространственных затруднений, тогда в случае 2,3-диметилциклогексена, у которого оба эффекта равноценны в обоих вариантах, должны получаться равные количества цис-и транс-изомеров. Это было подтверждено экспериментально [13]. [c.28]

    Реакция (1) соответствует бимолекулярной реакции ионного замещения, и реакция (2) формально соответствует механизму крекинга олефина. Ввиду особых свойств бензольного кольца, заключающихся в сильном взаимодействии между шестью углеродными атомами и шестью 7г-электронами, в результате чего образует. я исключительная среди углеводородов молекулярная структура, было бы неразумно для объяснения крекинга ароматических углеводородов искусственно приводить схему (2), основанную на поведении алифатических структур. В итоге можно констатировать, что реакция (1) представляет собой простую конкуренцию между п отоном и ионом карбония за место в ароматическом кольце, тог 1 а как реакция (2) отвечает образованию сильного комплекса протон арен (или катализатор арен) с дальнейшим отщеплением иона карбония. [c.130]

    Возвращаясь теперь к обсуждению методов получения фторидов, которые имеют свои особенности, вспомним, что сравнительно мало сольватированные фторидные ионные пары в МФК-реакциях выступают и как нуклеофилы, и как основания. Это лриводит к тому, что возрастает конкуренция между замещением, гидролизом и элиминированием. Монтанари и сотр. [52] проводили реакцию следующим образом первичный или вторичный алкилбромид, хлорид или мезилат встряхивали при 100—160 °С с насыщенным раствором КР и каталитическим количеством трибутилгексадецилфосфонийбромида в течение [c.114]

    Конкуренция гетеро- и гомолитического распада. Поскольку окисление — цепная автоинициированная реакция, ее будут тормозить только такие антиоксиданты, которые разрушают гидропероксид преимущественно гетеролитически. Проведенное в последние годы исследование механизма реакций ингибиторов III группы с ROOH показало, что часто разрушение гидропероксида идет по двум параллельным направлениям происходит гетеролитическое разрушение с образованием молекулярных продуктов и гомолитическое — с образованием свободных радикалов. Фосфиты, например, окисляясь гидропероксидом до фосфатов, генерируют также свободные радикалы, однако с низкой эффективностью—10 —10 [253]. Такую величину эффективности инициирования нельзя объяснить клеточным эффектом, для которого характерны значения 0,6—0,2. Она свидетельствует о двух параллельных направлениях реакции [c.123]

    Все гидроксиды щелочных металлов (Li, Na, К) растворяются и полностью диссоциируют в водном растворе, образуя одинаковое, с точки зрения теории Бренстеда-Лаури, основание (ОН ). Эти гидроксиды представляют собой сильные основания, подобно тому как рассмотренные выше вещества НС1 и HNO3 являются сильными кислотами. Соединяться с протонами в растворе могут и другие вещества, такие, как аммиак и многие органические азотсодержащие соединения все они также обладают, согласно представлениям Бренстеда-Лаури, свойствами оснований. Обычно эти вещества представляют собой более слабые основания, чем гидроксид-ион, потому что они не так сильно притягивают к себе протоны. Например, конкуренция аммиака с ОН за обладание протонами приносит аммиаку лишь частичный успех. Только часть имеющегося аммиака может присоединить протоны Н +, и поэтому реакция [c.221]

    При определении kts исключительно важно знать ие только ПХ абсолютные значения, но и соотношение кТб/к в, поскольку конкуренция между реакциями 16+ и 18+ фактически есть конкуренция продолжение — обрыв, так как в первом случае образуются два новых радикала, а во-втором — устойчивые молекулярные продукты. Замена двух радикалов Н и НОа на два радикала ОН в тех случаях, когда реакция 16 сдвинута вправо, весьма благоприятна для развития и продолжения цепей в целом, так как это — замена двух долгожителей на ко-роткоживущпе активные радикалы. Поскольку местоположение второго предела воспламенения, как указывалось, определяется конкуренцией между разветвлением по 5 и обрывом по 11 -> 15, 11 18, то это обстоятельство и было положено в основу экспериментов для пахож- [c.283]

    Приведенные оценки полезны в том отношении, что полшгают понять энергетический аспект условия (4.18). В кинетическом смысле фактор вырождения (4.12) и его роль в механизме как начальных стадий, так и процесса в целом, следует понимать не как узкую конкуренцию между реакциями 3 и 11, но как конкуренцию между разветвлением и обрывом вообще  [c.315]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]

    Сложность процесса гидроочистки и взаимосвязанность (или азаимная конкуренция) протекающих в нем реакций ставит вопрос [c.291]


Смотреть страницы где упоминается термин Реакции конкуренция: [c.139]    [c.331]    [c.102]    [c.230]    [c.49]    [c.299]    [c.62]    [c.129]    [c.131]    [c.278]    [c.281]    [c.305]    [c.347]    [c.290]    [c.196]   
Введение в теоретическую органическую химию (1974) -- [ c.224 , c.313 ]




ПОИСК







© 2025 chem21.info Реклама на сайте