Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мерники в производстве

    При взрыве сорвало крышку мерника, были деформированы другие аппараты и коммуникации и выбиты стекла в производственном помещении и пункте управления. Взрыв произошел при случайном смешении меланжа (смесь азотной и серной кислот) с органическим растворителем (по всей вероятности, с ацетоном), который оказался в мернике в момент заполнения его меланжем. При подго-товке производства к пуску после длительной консервации оборудование и коммуникации промывали органическим растворителем. После промывки мерник был просушен вакуумированием, однако качество осушки аппарата не было проконтролировано. Через 5 мин после начала заполнения сборника меланжем в соединениях шланга, связывающего сборник с наполнительным трубопроводом, началось обильное выделение окислов азота, после этого последовал взрыв. [c.362]


    В производстве катализатора используют серную кислоту, которую закачивают в мерники. Из верхнего люка мерника интенсивно выделяются пары кислоты, распространяющиеся на рабочие места, поэтому при расположении мерников внутри помещения предусматривают устройство вытяжных труб. При всех работах, где операторы так или иначе соприкасаются с кислотой, они пользуются средствами индивидуальной защиты очками, предохраняющими глаза от попадания брызг кислоты, и соответствующей спецодеждой. В местах [c.164]

    Для поверки ТПУ используются образцовые мерники 1 -го разряда отечественного производства и импортные [7]. В России мерники 1-го разряда изготовляются вместимостью до 500 дм в соответствии с требованиями ГОСТ 8.400-80. Образцовый мерник представляет собой цилиндрический сосуд с коническим днищем и крышкой и узкой горловиной (рис.2.8). [c.93]

    С учетом указанных преимуществ и недостатков методы поверки образцовыми мерниками и весами целесообразно применять при выпуске ТПУ 1 -го разряда из производства или ремонта, а также для поверки ТПУ повышенной точности, например, предназначенных для поверки стационарных ТПУ на месте эксплуатации. Применение поверочных установок с мерниками или весами на узлах учета связано с большими затратами ввиду необходимости строительства специальных зданий для размещения средств измерений, емкостей для воды, реагентов, насосов и другого вспомогательного оборудования, причем коэффициент эксплуатации этих зданий и оборудования очень низок (поверка стационарных ТПУ производится один раз в 2 года). [c.175]

Рис. XII.26. Технологическая схема производства полистирола эмульсионным способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — насос дозировочный 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со сжатым азотом 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для растворения щелочей 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — фильтр масляный п — вентилятор 18 — конденсационный горшок 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник водной фазы 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы. Рис. XII.26. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/311590">полистирола эмульсионным</a> способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — <a href="/info/13896">насос дозировочный</a> 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со <a href="/info/390414">сжатым азотом</a> 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для <a href="/info/153497">растворения щелочей</a> 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — <a href="/info/135780">фильтр масляный</a> п — вентилятор 18 — <a href="/info/94255">конденсационный горшок</a> 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник <a href="/info/1899027">водной фазы</a> 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы.

    Цифры после второго тире обозначают для сборников, мерников, аппаратов с перемешивающими устройствами и фильтров для химических производств  [c.927]

    Наиболее опасные участки производства, связанные с розливом жидкостей в тару, а следовательно, с наиболее интенсивным испарением, отделяются от складских помещений стенами или перегородками. Эти помещения должны иметь выходы непосредственно наружу. Для отвода паров из стационарно установленных мерников, напорных баков, промежуточных емкостей обычно устанавливают дыхательные трубы, которые выводят на 2 м выше конька крыши. [c.26]

    Транс-р-Каротин. В эмалированный реактор 83, снабженный мешалкой и обратным холодильником, загружают i u - -каротин, из мерника 84 петролейный эфир (80—90° С), нагревают массу до кипения и продолжают перемешивать в течение 10—12 ч (изомеризация). Затем сливают в кристаллизатор 85, охлаждают до О — минус 2°С и кристаллизуют в течение 6 ч. Кристаллы выделяют в центрифуге 86, а маточный раствор I направляют в сборник 87 и после сгущения в вакуум-аппарате 88, кристаллизации в кристаллизаторе 89, выделения кристаллов в центрифуге 90 получают дополнительное количество кристаллов транс- -каротина II, которые поступают для перекристаллизации в кристаллизатор 85. Маточный раствор II является отходом производства. [c.61]

    На рис. 35 изображена технологическая схема производства D-сорбита с применением непрерывного процесса гидрогенизации D-глюкозы и ионообменной очистки сорбитного раствора. Элеватором / глюкозу загружают через бункер 2 в реактор смеситель 3, в котором приготовляют 30%-ный водный раствор. Добавляют 0,5% к массе глюкозы активированного угля и после перемешивания в течение 5—10 мин ири температуре 75° С фильтруют через нутч-фильтр 4 в сборник 5, откуда насосом 6 перекачивают в смеситель 7 (небольшого объема). Туда же непрерывно подают настой известковой воды из мерника-смесителя 8 и катализатор Реней-никель. Раствор глюкозы насосом высокого давления 9 подают в тройник смешения 10. Сюда же компрессором и нагнетают водород под давлением 80—100 кгс/см и суспензию направляют в подогреватель 12, где температуру газо-жидкостной смеси повышают до 135—140° С. Далее суспензия непрерывно поступает последовательно в три реактора 13, проходит холодильник 14, где охлаждается до 30—40° С, сепаратор 15, кайл еот дел итель 75. Гидрированный раствор направляют в сборник 17 и далее на очистку ионитами. Водород из каплеотделителя 16 многоступенчатым компрессором 18 подают в тройник смешения 10. Убыль водорода в системе компенсируют нагнетанием свежего водорода компрессором 11 из газгольдера 19. Для безопасной работы системы должны быть предусмотрены необходимые предохранительные клапаны и аварийные вентили для сброса водорода из системы через вытяжную трубу с предохранительной свечой в атмосферу. Раствор сорбита из сборника 17 насосом 20 передают в смеситель 21, в котором раствор водой или промывными водами, получаемыми при отмывке смол от сорбита, разбавляют до нужного содержания сухих веществ, фильтруют через нутч-фильтр 22, сливают в сборник 23 и далее насосом 24 нагнетают в колонну с катионитом КУ-2, а из нее в колонну с анионитом, где pH раствора повышается до 4,0—4,5. Из колонн 25—26 очищенный раствор направляют в сборник 27 и далее на окисление. [c.253]

    В качестве примера на рис. 4.18 приведена технологическая схема ионообменной очистки сточных вод производства хлоранилина от смесей анилина с хлоранилином. Необработанная сточная вода поступает в резервуар, куда дозируется из мерников 2 соляная кислота для снижения рН 4- -4,5. Подкисленная сточная вода насосом 16 подается на фильтр, где отделяется от выпавших при подкислении взвешенных веществ. Фильтрат поступает в блок последовательно расположенных ионообменных колонн с общей высотой слоя катионита КУ-2 не менее 3 м скорость фильтрования около 2 м /(м ч). Обычно две колонны работают в режиме ионного обмена, а одна регенерируется. Регенерационный аммиачно-метанольный раствор насосом 14 из мерника 8 подается в регенерируемую колонну снизу вверх. Подогретая до 35—40 С вода для промывки отрегенерированной колонны поступает в нее через тот же мерник. [c.152]

    Серную кислоту перекачивают центробежными насосами в напорный бак, откуда она поступает в мерник. При периодическом способе производства порции муки и серной кислоты смешиваются в смесителе в течение 1—2 мин, и пульпа, с помощью клапана в дне смесителя, спускается в камеру. В зависимости от объема камеры устанавливают один или два смесителя. Количество замесов колеблется от 50 до 130. Время загрузки камеры составляет 0,8—2,5 ч. [c.66]

    Технологический процесс производства продукта Р] состоит из трех технологических стадий, осуществляемых последовательно в аппаратах Я, Я2, Яз-Лервая стадия состоит из автономных операций загрузки реагента из мерника [c.154]

Рис. 105. Технологическая схема процесса разделения смесей, получающихся в производстве спиртов С,—Q i, /4—кубы 2, //—мерники 3, /5—колонны 4—дефлегматор 5—конденсатрр б—холодильник Рис. 105. <a href="/info/28503">Технологическая схема процесса</a> <a href="/info/190748">разделения смесей</a>, получающихся в <a href="/info/64730">производстве спиртов</a> С,—Q i, /4—кубы 2, //—мерники 3, /5—колонны 4—дефлегматор 5—конденсатрр б—холодильник

    Основное количество поливинилового спирта используют для производства поливинилацеталей Горячий водный раствор ПВС проходит через (продуктов конденсацик ПВС с альдегидами) фильтр 2, мерник 3 и поступает на ацеталирование [c.41]

    При производстве новолачных олигомеров с использованием аппаратов идеального вытеснения (рис. 34) фенол и формалин из мерников / и 2 подают в емкость 4 для приготовления реакционной смеси. В эту же емкость из аппарата 3 подается раствор щавелевой кислоты. Полученная реакционная смесь перекачивается в расходную емкость 5, а из нее — в напорную емкость 6, откуда самотеком поступает в многосекционный реактор 7, соединенный с наклонным обратным холодильником Я. В первой секции реактора смесь нагревается до 70—80 "С, а затем — за счет тепла экзотермической реакции доводится до кипения, которое поддерживается в течение всего времени пребывания смеси в реакторе. Эмульсия олигомеров из реактора поступает в отстойник 9, в котором после охлаждения примерно до 60 °С разделяется на два слоя нижний— олигомерный и верхний — водную фазу. Из отстойника олигомеры с влажностью 15—18% и содержанием свободного фенола около 16% поступают в трубную сушилку //, а водная фаза — на обес-феноливание. Высушенные олигомеры подаются в стандартизаторы 12, а затем на охлаждающий барабан 14, с которого срезаются ножом, и направляются на упаковку. Пары, выходящие из трубной сушилки 11, конденсируются в холодильнике 13. Конденсат собирают в вакуум-сборниках 15, а затем перекачивают насосом в мерник 15, из которого вводят малыми добавками в исходное сырье (или направляют на термическое обезвреживание — сжигание). [c.56]

    Наиболее ответственной операцией в производстве волокнистых прессматериалов является пропитка наполнителя олигомером. Предварительно олигомер отделяют от надсмольной воды (в отстойнике /). Далее олигомер самотеком поступает в смеситель-стандартизатор 2, в который добавляют этиловый спирт измеркика 3 и предварительно нагретую в термошкафу и профильтрованную олеиновую кислоту из мерника 4. Спирт вводится для снижения вязкости олигомера и обеспечения равномерной пропитки хлопковой целлюлозы. [c.62]

    Реакционная смесь передается центробежным насосом в сборник конденсационного раствора 2, откуда самотеком непрерывно через фильтр 3 поступает в реактор для конденсации 4. Конусная часть реактора снабжена рубашкой для рбогрева. Кроме того, внутри аппарата имеется змеевик для дополнительного обогрева паром и труба, по которой конденсационный раствор подается на обогреваемую поверхность днища аппарата. Реактор снабжен холодильником 5, который при пуске агрегата включается как обратный, а в течение всего процесса работает как прямой это обеспечивает одновременно с конденсацией сушку получаемой смолы. При производстве смолы МФ-17 в реактор 4 через мерник 6 и фильтр 7 непрерывно подается диэти-ленгликоль (в соотношении 1 14 к реакционной смеси). В зависимости от скорости подачи смеси температура массы поддерживается в пределах 105—115°С. Образовавшаяся смола непрерывно выводится из верхней части реактора в аппарат 8 [c.67]

Рис. 50. Схема производства кадмий-кальций-фосфатной контактной массы /—бак-реактор 2—бак-разбрызгиватель 3 — фильтр 4—насос 5—сборник раствора б—бак-осадитель с мешалкой 7—бак-реактор с мешалкой 5 — отстойник 9—мерник Ю—сборняк растворов //—бак-растворнтель с мешалкой /2—автоматический фильтр-пресс /3- вагонетка /4—сушилка /5—смеситель твердых фаз /5—мельница /7—таблеточная машина. Рис. 50. <a href="/info/63180">Схема производства</a> <a href="/info/170585">кадмий-кальций</a>-фосфатной <a href="/info/174608">контактной массы</a> /—бак-реактор 2—бак-разбрызгиватель 3 — фильтр 4—насос 5—<a href="/info/639821">сборник раствора</a> б—бак-осадитель с мешалкой 7—бак-реактор с мешалкой 5 — отстойник 9—мерник Ю—сборняк растворов //—бак-<a href="/info/529441">растворнтель</a> с мешалкой /2—<a href="/info/64620">автоматический фильтр-пресс</a> /3- вагонетка /4—сушилка /5—<a href="/info/1031028">смеситель твердых</a> фаз /5—мельница /7—таблеточная машина.
    Карбонатная масса из первой секции 6 переводится во вторую 7, где к ней из мерника 3 насосом 5 добавляется раствор едкого натра и производится каустическое доомыление жирных кислот и нейтрального жира. Если в производстве применяется соапсток, то из него получают косвенным методом в аппарате 8 соапсточное ядро, которое добавляют в секцию 7 варочного аппарата, где оно смешивается с основной массой мыла, сваренного прямым методом. Готовое мыло непрерывно поступает в мылосборник 9 и направляется на дальнейшую обработку. Для получения более чистого мыла его подвергают частичному высаливанию в аппарате 10, куда из мерника 4 поступает раствор поваренной соли. Высаливание также ведется непрерывно, а разделение мыльного клея на ядро и подмыльный клей может быть произведено либо в центрифуге //, либо в колонном аппарате 12. Ядро собирается в мылосборник 9, а подмыльный клей — в сборник 13, откуда он направляется на повторную переработку. [c.135]

    Учитывая, что в производстве красителей эксплуатируются не только мерники, но и другая аппаратура, которая успешно может быть заменена бипластмассовой, эффект от внедрения разработки составит миллионы рублей. [c.52]

    Дегидратация. Процесс осуществляют при помощ,и хлористого водорода. Для этого из мерника 63 сливают в вакуум-аппарат 62 хлористый метилен, растворяют ДИОЛИН-С40 и переводят раствор в реактор 64, снабженный мешалкой и рассольным охлаждением. Массу охлаждают до минус 15—18° С, а затем из мерника 65 постепенно добавляют 8%-ный раствор сухого H I в абсолютном спирте с таким расчетом, чтобы температура реакционной массы не превышала к концу процесса +3,+5° С. Затем в делительной воронке бб отделяют органический слой, промывают его насыщенным раствором бикарбоната из мерника 67 и направляют в сборник 68 и далее в вакуум-аппарат 69, где под вакуумом в токе азота при температуре 30—35° С отгоняют хлористый метилен. Кристаллизующуюся массу направляют в кристаллизатор 70, где при температуре —2, —3° С в течение 8—10 ч в присутствии азота выпадают кристаллы 15,15 -дегидро- -каротина. Последние отфуговывают в центрифуге 71, промывают этиловым спиртом. Выход около 50%. Маточный раствор поступает в сборник 72 и является отходом производства. Вопрос о выделении вещества из маточного раствора еще недостаточно изучен. 15,15 -дегидро-Р-каротин представляет собой кристаллы красного цвета с металлическим блеском температура плавления 153—154°С хорошо растворим в органических неполярных растворителях, плохо — в воде Хтах=454 и 430 нм] =1568 и 1873. Выход 48—50% [70]. [c.60]

    Моно-цис-р-каротин. В реактор 73 из эмалированной стали загружают через люк 15,15 -дегидро-Р-каротин, а из мерника 74 толуол и при нагревании до 35—40° С и перемешивании растворяют кристаллы. Затем добавляют палладиевый катализатор, нанесенный на мел. Аппарат дважды продувают азотом из баллона 75, а затем водородом из баллона 76, после чего при температуре 20° С и избыточном давлении до 0,5 кгс см при перемешивании осуществляют процесс гидрогенизации. Реакцию контролируют по количеству поглощенного водорода. Далее реакционную массу фильтруют через нутч-фильтр 77 и сборник 78, откуда фильтрат направляют в перегонный аппарат 79 для отгонки толуола при вакууме (остаточное давление 8—10 мм рт. ст.) в токе азота. Кубовый остаток сливают в кристаллизатор 80, где при минус 5—8° С выкристаллизовывают 15,15 -мо-но-цис- -каротин. Кристаллы выделяют при помощи центрифуги S/ маточный раствор поступает в сборник 82 и является отходом производства. Катализатор с нутч-фильтра 77 направляют на регенерацию. Выход цис- -каротина составляет 90—95% [70], темно-вишневые кристаллы температура плавления 148—150° С Xniax=338 (цис-пик), 450, 480 нм (в гексане) % = 1040, 1765, 1430. [c.61]

    Хлоргидрат ацетамидина получают при взаимодействии хлоргидрата ацетоиминоэфира и 10%-ного спиртового раствора аммиака при температуре 10°С. Для этого в реактор 52 загружают из мерника 53 абсолютный спирт, а из баллона 54 подают аммиак. Насыщение спирта аммиаком ведут до 10%-ной концентрации. Затем спиртовый раствор аммиака спускают в реактор 55, охлаждают рассолом до 10°С и постепенно добавляют в него ацетоиминоэфир. Реакционную массу перемешивают 6 ч и на друк-фильтре 56, снабженном паровой рубашкой, отфильтровывают осадок хлористого аммония. Этот осадок тщательно промывают абсолютным спиртом при нагревании и перемешивании. Промывка производится 3—4 раза для полного извлечения хлоргидрата ацетамидина. Фильтрат и спиртовые промой поступают в сборник 57, а затем в вакуум-аппарат 58 для отгонки спирта, который собирают в приемнике 59, откуда его направляют на повторное использование в мерник 53. Упаренную массу направляют в кристаллизатор 60, где в течение 4 ч кристаллизуют при 0°. Кристаллы отфильтровывают в центрифуге 61, промывают спиртом и высушивают в вакуум-сушилке 62 при температуре 30—40° С. Маточный раствор из центрифуги поступает в сборник 63, а далее в вакуум-аппарат 64, где его под вакуумом упаривают, затем кристаллизуют в кристаллизаторе 65 и фильтруют в центрифуге 66. Кристаллы ацетамидина И после растворения поступают на повторную перекристаллизацию в вакуум-аппарат 58. Маточный раствор II поступает в сборник 67 и является отходом производства. [c.85]

    Кубовый остаток растворяют в 10%-ной щелочи в реакторе 79 и нагревают 2,5 ч при температуре 100° С. Затем масса поступает в кристаллизатор ЙО, где после охлаждения до 20° С из мерника 81 вводят 50%-ную щелочь и высаливают аминопиримидин. в виде маслянистой жидкости, которая быстро кристаллизуется. Массу фугуют в центрифуге 82. Щелочной маточник является отходом производства. Кристаллы аминопиримидина поступают на перекристаллизацию в растворитель 83, куда вводят из мерника 74 толуол. Раствор фильтруют через друк-фильтр 84, кристаллизуют в кристаллизаторе 85, фильтруют через друк-фильтр 86. Кристаллы аминопиримидина I направляют на хлоргидрирование. Маточный раствор из сборника поступает на выпаривание в вакуум-аппарат 87. Сгущенный раствор кристаллизуют в аппарате 88, фильтруют в центрифуге 89. Кристаллы аминопиримидина II возвращают на перекристаллизацию в растворитель 82, Маточный раствор II поступает из центрифуги в сборник 90 и является отходом производства. [c.86]

    Для сдвига равновесия реакции в сторону образования 3-аланина следует обеспечить большой избыток аммиака и высокую температуру [44, 66]. По данным Е. Жданович [50], требуется температура реакции 154— 158° С (избыточное давление 26—32 кгс/см ), соотношение 10%-ного раствора аммиака к акрилонитрилу 18,5 1 и углекислого аммония к акрилонитрилу 3,7 1. На основании этих данных технологический процесс заключается в следующем в горизонтальный автоклав 1 (рис. 18) с вращающейся мешалкой и паровой рубашкой загружают из мерника 2 водный раствор (10—15%) аммиака и из сборника 3 двууглекислого аммония и из мерника 4 акрилонитрил. Нагревают реакционную массу до 154—158° С, при этом избыточное давление повышается до 30—40 кгс1см . Не допускается загрузка более 0,4 объема автоклава. Из автоклава реакционную массу выгружают в перегонный аппарат 5, где отгоняют водный раствор аммиака. Кубовый остаток сливают в реактор 6, разбавляют водой и очищают активированным углем при температуре 40—50° С уголь отфильтровывают на нутч-фильтре 7, фильтрат направляют в сборник 8, а затем в вакуум-аппарат 9 для сгущения. Сгущенный раствор сливают в кристаллизатор 10, где выделяют -аланин добавлением из мерника // этилового абсолютированного спирта при температуре 0-1-5° С. Затем осадок фугуют в центрифуге 2. Кристаллы сушат в вакуум-сушилке 13 и направляют в сборник 14. Маточный раствор поступает в сборник 15, откуда засасывают в вакуум-аппарат 16, сгущают, сливают в кристаллизатор 17, где спиртом выделяют дополнительное количество -аланина, который отфуговывают в центрифуге 18. Кристаллы -аланина II для переосаждения направляют в реактор-кристаллизатор 10. Маточный раствор II из центрифуги 18 собирают в приемнике 19, он является либо отходом производства, либо его направляют на переработку в -аланин. Выход -аланина — прямой 40—50%, а при регенерации -аланина из вторичного и третичного аминов выход может быть увеличен до 65—70 %. -Аланин ( -аминопропионовая кислота) aHjOaN представляет собой бесцветные кристаллы с температурой 199— 200° С [52], молекулярная масса 89,09, хорошо растворим в воде, труднее в метиловом, этиловом и изопропиловом спиртах нерастворим в эфире и ацетоне. [c.144]

    Облучение эргостерина и получение концентрата витамина Оа- Ряд исследований показывает, что в эфирном растворе процесс активации эргостерина протекает не так интенсивно, как в спирте. Если в последнем максимум активации наступает через 30—40 мин, то в среде эфира через 150— 200 мин, что позволяет избежать переоблучения раствора. Это особенно важно для производства кристаллического эргокальциферола, так как продукты переоблучения эргостерина удерживают эргокальциферол в растворе [5, 12 ], препятствуя его кристаллизации. Сухой эргостерин I подвергают облучению Б растворе серного эфира. Предполагают, что эргостерин вначале изомеризуется в прекальциферол, который при нагревании переходит в эргокальциферол и частично в люмистерин (см. стр. 300). В реактор 52 из сушилки поступает эргостерин, а из сборника 53 — эфир. Полученный раствор фильтруют через друк-фильтр 54, фильтрат через мерник 55 подают в сборник 56, откуда он непрерывно течет через облучающие аппараты 57. Облученный раствор переходит в сборник 58, затем в перегонный аппарат 59 для отгонки эфира и выделения непрореагировавшего эргостерина, который отфильтровывают в друк-фильтре 60 и передают на перекристаллизацию. Этот эргостерин должен быть перекристаллизован вследствие низкой чистоты (80—90%). Фильтрат стандартизуют по активности маслом в смесителе 61, фильтруют через нутч-фильтр 62 в сборник 63, откуда направляют на расфасовку. [c.427]

    В сборник грубого фильтрата барды кроме минеральных сс вносят ортофосфорную, сериую и олеиновую кислоты. Ортофос(] ная кислота используется в производстве без разбавления. Kh j насосом подают в мерник-дозатор, а из него самотеком- она по пает в сборник грубого фильтрата. Серная кнслота поступает в i изводство без разбавления и используется для поддержания р оптимальных пределах (4,8—5,5) при выращивании засевных и i изводствениых дрожжей. Кислота из резервуара, расположеиио складе химикатов, кислотоупорным насосом подается в сборник затор, из которого она самотеком илн насосом-дозатором нап ляется через смеситель в дрожжерастильные чаны или в аппар чистой культуры. [c.248]

    Правильный учет спирта зависит прежде всего от точности измерения мерников отпуска спирта в хранилище с производства и мерников иа отпуск спирта потребителям, а также от пользования вполне исправными спиртомерами и термометрами. Главный бухгалтер завода, инженер по качеству и начальник производственной лаборатории несут персональную ответственность за своевременное переизиерение мерников, техническое состояние спиртоизмеряющих приборов и правильное оформление материально-ответственными лицами документации, связанной с учетом спирта. [c.319]

Рис. 10-13. Технологическая схема производства треххлористого фосфора 1 — приемный бак для фосфора, 2 — мерник фосфора, з — сборник фосфора, 4 — гид о-затвор, 5 — растворитель фосфора, 6 — погружной насос, 7 — хлоратор, 8 — полочная колонна, 9 — обратный конденсатор, Ю — холодильник, 11 — приемник сырца, 12 — дохлоратор, 13 — конде1 сатор, 14 — приемник готового продукта Рис. 10-13. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/71450">треххлористого фосфора</a> 1 — приемный бак для фосфора, 2 — мерник фосфора, з — сборник фосфора, 4 — гид о-затвор, 5 — <a href="/info/1570436">растворитель фосфора</a>, 6 — <a href="/info/41171">погружной насос</a>, 7 — хлоратор, 8 — <a href="/info/94204">полочная колонна</a>, 9 — <a href="/info/25692">обратный конденсатор</a>, Ю — холодильник, 11 — приемник сырца, 12 — дохлоратор, 13 — конде1 сатор, 14 — приемник готового продукта
    MOHO- и дисульфокислот фенольных соединений из кубового остатка производства дифенилолпропана и отработанной серной кислоты производства хло-рамина-Б. Разработанная технологическая схема сульфирования кубовых остатков производства дифенилолпропана отработанной серной кислотой производства хлорамина-Б (рис 4.3) была апробирована на опытнопромышленной установке на ОАО Уфахимпром . Сульфирование кубового остатка производства дифенилолпропана осуш,ествлялось в реакторе с мешалкой Р1, в который через мерники М1 и М2 загружалось необходимое сырье. Процесс сульфирования протекал в условиях, приведенных в табл. 4.1., при интенсивном перемешивания реакционной массы, которое обеспечивалось циркуляционным насосом Н1. Хлористый водород, выделяюш,ийся из отработанной серной кислоты в составе паров воды, нейтрализовывался в щелочной ловушке Л1 раствором гидроксида натрия. Партия смесей дисульфокислот, наработанная на этой установке успешно прошла опытно-промышленные испытания на ЗАО ТЗП в качестве заменителя дорогостоящей бензол-сульфокислоты при получении химически стойкой замазки Арзамит-5 . [c.20]

    Органические основания вытесняются из катионита при регенерации 5%-ным раствором NH3 в смеси растворителей, состоящей из 80% спирта (этилового или метилового) и 20% воды. При этом концентрация аминов в отработанных растворах может быть доведена приблизительно до 100 г/л. Из таких растворов аммиак и спнрт отгоняют и используют в следующей операции регенерации, а от водной фазы отделяют извлеченные из ионообменной смолы сырые органические продукты для дальнейшей их ректификации. Подогрев регенерирующего раствора (или колонны с катионитом, отключенной на регенерацию) до температуры 35—40° С значительно ускоряет процесс отмывки органических веществ из смолы. В качестве примера на рис. 33 приведена технологическая схема ионообменной очистки сточных вод производства хлоранилина от смесей анилина с хлора-нилином. Сточная вода принимается в сборник /, куда дозируется из мерников 2 соляная кислота для понижения pH до 4—4,5. Подкисленная сточная вода насосом 18 подается иа фильтр 4, где отделяется от выпавших при подкислении взвесей. Фильтрат принимается в бак 5 п со скоростью около 2 м /м ч поступает в блок последо-вательно включенных колонн 6, 7, 8 с общей длиной слоя загруженного в них катионита КУ-2 не менее 3 м. [c.153]

    Экстрагирование протекает при интенсивном движении водно-спиртового раствора через слой сырья, укладываемого на ситчатое днище И экстрактора. Процесс экстракции начинается с момента поступления из мерника водно-спиртового раствора в экстрактор для настаивания. Каждый час в течение 10... 15 мин жидкость перекачивают из экстрактора в мерник. Из мерника раствор спускают снова в экстрактор. В такой последовательности перекачивают жидкость до тех пор, пока не получат настой с требуемой концентрацией растворимых веществ. Г отовый настой насосом подают в производство. Для извлечения спирта отработанное сырье промывают водой в течение 6...20 ч. После этого экстрактор разгружают и операции повторяют со свежей порцией сырья. [c.970]

    На рис. 334 изображена схема получения фторида натрия из кремнефторида натрия, по которой работал Одесский суперфосфатный завод до замены этого производства производством криолита. Эта схема позволяет вырабатывать каждый из продуктов (NaF и NaaSiFe) в отдельности или совместно. Исходным сырьем является кремнефтористоводородная кислота, полученная водной абсорбцией отходящих фтористых газов. Кремнефторид натрия получают в стальных, футерованных диабазовой плиткой мешалках-реакторах 5 емкостью по 2,7 м , куда подают кислоту из стального, футерованного плиткой мерника 2 (емкостью 1,9 ж ) и раствор поваренной соли из стального мерника 4 (емкостью 1,5 ж ). Полученная пульпа кремнефторида натрия может быть непосредственно переработана в товарный продукт, для чего твердую фазу отделяют от жидкости на центрифуге 7 и направляют на сушку, размол и расфасовку. Взаимодействие пульпы Na2SiFe с содовым раствором осуществляют в стальных реакторах 6 с мешалками емкостью по 2,4 ж , обогреваемых острым или глухим паром в последнем случае они снабжены паровыми рубашками. Обогрев глухим паром значительно уменьшает объем маточных растворов. В реактор заливают половину требуемого количества насыщенного раствора соды, нагревают его до 60—80° и загружают полную порцию пульпы кремнефторида натрия, а затем постепенно добавляют остальное количество содового раствора. По окончании реакции (через 40— 45 мин) пульпу спускают при перемешивании в центрифуги 7. Маточный раствор направляют через стальной сборник 9 в содорас-творитель 10. Отфугованный продукт высушивают в шнекОвой су- [c.362]


Смотреть страницы где упоминается термин Мерники в производстве: [c.301]    [c.139]    [c.384]    [c.138]    [c.750]    [c.202]    [c.9]    [c.82]    [c.87]    [c.97]    [c.101]    [c.127]    [c.134]    [c.149]    [c.164]    [c.283]    [c.83]    [c.74]   
Коррозия и защита химической аппаратуры ( справочное руководство том 9 ) (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Емкости также Баки, Мерники, Цистерны для водного конденсата в производстве этиленимина

Емкости также Баки, Мерники, Цистерны для возвратных растворов в производстве

Мерники

Мерники также Баки, Емкости для возвратных растворов в производстве

Мерники также Баки, Емкости для реакционной смеси в производстве капролактона

Мерники также Емкости в производстве серной кислоты

Мерники также Емкости для в производстве

Мерники, Хранилища бензола в производстве



© 2025 chem21.info Реклама на сайте