Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Актиния фосфат

    Так, например, при осаждении актиния-228 на фосфате висмута увеличение концентрации азотной кислоты от 0,2 до 1,0 УИ приводит к уменьшению извлечения актиния от 86 до 6% (рис. 15) [7]. Подобное же действие оказывает увеличение концентрации нитрата аммония (увеличение ионной силы), тогда как хлорат аммония не вызывает уменьшения захвата актиния (рис. 16). [c.53]


    Схема механизма сокращения следующая. Там, где актиновые и миозиновые миофиламенты перекрываются, миозиновые головки как крючки зацепляются за соседние Р-актиновые нити, образуя с ними поперечные мостики. Эти мостики загибаются, как пальцы, в одном направлении, протаскивая актиновые миофиламенты вдоль миозиновых. Затем головки отделяются от актина, распрямляются, соединяются с новыми его участками, и цикл повторяется. При сокращении в каждый данный момент времени примерно половина головок тянет , а остальные возвращаются в исходное положение, что обеспечивает плавность процесса. Энергию для него дает АТФ. Молекулы АТФ гидролизуются до АДФ и фосфата под действием АТФазы, содержащейся в миозиновых головках. Происходя- [c.386]

    Это взаимодействие обеспечивает высвобождение ADP и неорганического фосфата из актин— миозинового комплекса. Поскольку наименьшую энергию актомиозиновая связь имеет при величине угла 45°, миозин изменяет свой угол с осью фибриллы с 90° на примерно 45°, продвигая актин (на 10—15 нм) в направлении центра саркомера. [c.337]

    Комплекс миозин—АТР обладает низким сродством к актину и поэтому происходит отделение миозиновой (АТР) головки от Р-актина. Последняя стадия и есть собственно расслабление, которое таким образом отчетливо зависит от связывания АТР с актин—миозиновым комплексом. АТР вновь гидролизуется миозиновой головкой без высвобождения ADP и неорганического фосфата, и цикл возобновляется. [c.337]

    Таким образом, наиболее существенные черты механизма действия актомиозинового комплекса заключаются в том, что, во-первых, реакция гидролиза АТР совершается в то время, когда миозин не взаимодействует с актином, и, во-вторых, движущая сила процесса возникает при освобождении продуктов ADP и у-фосфата. С описанным представлением о том, как миозиновые головки "шагают" вдоль актиновых филаментов, согласуются не только результаты кинетических исследований, но и множество экспериментальных данных, [c.127]

    Тономура предложил наглядную молекулярную интерпретацию скользящей модели (см. с. 396). Схема Тономуры приведена на рис. 12.15. Предполагается, что 1) сокращение связано с фос-форилированием и дефосфорилированием миозина 2) конформация головки миозина меняется при добавлении АТФ , 3) связь Г-актин-миозин расщепляется с образованием комплекса миозин-АТФ при высоких и миозин-фосфат-АДФ при низких концентрациях АТФ прочность связи зависит от конформаций миозина и комплекса Г-актина с регуляторным белком, конфор- [c.403]

    Широко распространено в природе превращение энергии гидролиза АТФ в механическую энергию, которое в наиболее совершенном виде происходит в мышцах. Здесь также основополагающим компонентом является специальный белок — миозин, который обладает способностью катализировать гид])Олиз АТФ до АДФ и неорганического фосфата, т.е. является АТФазой. В специально организованных надмолекулярных системах, содержащих помимо нитей миозина еще несколько белков, главным из которых является актин, гидролиз АТФ сопровождается сокращением мышечнык волокон. [c.37]


    I - присоединение АТФ к миозину 2 - диссоциация комппекса А-М под действием АТФ 3 - гидролиз АТФ, связанного с миозином -восстановление контакта , 5 - диссоциация АДФ и фосфата под действием актина [c.437]

    Фосфат актиния - асро, [c.107]

    Из-за высокой радиоактивности актиний слабо светится в темноте. На влажном воздухе покрывается белой пленкой оксида, препятствующего дальнейшему окислению. Почти все соли актиния белого цвета в растворах бесцветны. Большинство из них, кроме АСРО4, изоморфно с соответствующими соединениями лантана. Актииий образует те же нерастворимые соединения (гидроксид, фосфат, оксалат, карбонат, фтор-силикат), что и лантан однако, гидроксид Ас(ОН)з имеет более основной характер. Актиний является опасным радиоактивным ядом. [c.596]

    Получение актиния. Природным источником получения обычно применяемого изотопа актиния Ас являются урановые руды, при обработке которых актиний осаждается в фракции редкоземельных элементов. Отделение его от редкоземельных элементов является нелегкой задачей. Вследствие чрезвычайно малой концентрации актиния всегда требуется предварительное обогащение этой фракции, обычно путем дробной кристаллизации магнийнитратного комплекса, аммонийнитратного комплекса или путем дробного осаждения оксалатов, фосфатов или гидроокисей редкоземельных элементов. Из обогащенного препарата актиний выделяют хроматографическим и экстракционным методами. [c.495]

    Актиний в микроконцентрациях из растворов соосаждается с гидроокисями иттрия, алюминия и железа. Он количественно соосаждается с карбонатом, фторосиликатом, фторидом лантана, менее полно с оксалатом лантана. Изоморфное соосаждение актиния наблюдается также с сульфатом лантана. Актиний соосаждается с фосфатом висмута, сульфатом свинца, хроматом бария, иодатом церия. Из данных по соосаждению и прямым реакциям осаждения следует, что актиний образует хорошо растворимый не только в воде, но и в этиловом и изопропиловом спирте нитрат, в присутствии сульфата калия — двойную соль КА1 (564)2. Малорастворимы фторид, оксалат, карбонат, фосфат (АСРО4 /гНгО) и фторосиликат актиния. [c.345]

    Методика основана на соосаждении америция с фосфатом висмута из азотнокислого раствора карбамидных солей при pH = 1,7. Фосфат висмута растворяется в б М соляной кислоте, затем америций осаждается с фторидом лантана. Осадок переносится на мишень из нержавеющей стали и анализируется на пропорциональном а-счетчике с малым фоном. Присутствие тория, плутония, кюрия, актиния и нептуния оказывает влияние на точность определения америция. Этим методом можно обнаружить количества америция порядка 0,5 распад1мин. [c.80]

    В последнее время для разделения микроколичеств актиния и радия предлолсен метод хроматографии на бумаге, пропитанной неорганическими ионитами, такими, как фосфат или вольфрамат циркония. [c.380]

    Как и редкоземельные элементы, актиний образует труднораство-римые фторид, фосфат, карбонат, оксалат, фторосиликат и гидроокись. Установлено, что Ас(ОН)з более растворима, чем Ьа(ОН)з, и не полностью осаждается аммиаком. Количественные данные о растворимости указанных солей отсутствуют. [c.231]

    И структурные белки. Несомненно, что их роль не только механическая. Доказано, что структурным белкам присущи и каталитические функции. Эти функции особенно ярко проявляются у мышечного сократительного белка миозина. Исследования В. В. Эн-гельгардта и Н. А. Любимовой показали, что миозин ускоряет взаимодействие с водой (т. е. гидролиз) важнейшего аккумулятора энергии — аденозинтрифосфорной кислоты (АТФ). При этом получается аденозиндифосфорная кислота и фосфат. Энергия реакции используется мышцей, во время работы которой нити белка миозина сокращаются. Следовательно, этот белок выполняет двойную нагрузку он регулирует освобождение энергии и он же потребляет энергию, сокращаясь в процессе работы мышцы. Молекула миозина представляет собой длинную цепь — ее длина равна примерно 160 нм, а молекулярная масса достигает 600000, Кроме миозина, известны и другие мышечные белки (актин, тро-помиозин), Для того чтобы эти белки могли осуществлять обратимое сокращение, необходимо присутствие катионов металлов, вообще активно поглощаемых мышечными белками. Для работы мышцы требуются ионы калия, кальция, магния, нужен также запас фосфатов, используемых для синтеза АТФ, Связывание ионов металлов и водорода с ионными группами белков сильно влияет на взаимодействие участков цепи и приводит к изменению ее длины. Однако механизм мышечного сокращения более сложен и, по-видимому, связан с особым расположением нитей миозина и актина в мышце, позволяющих частицам актина при работе мышцы скользить вдоль нитей миозина. Из числа растворимых белков особенно важны альбумины и глобулины. [c.62]

    Поскольку актиний трудно выделить из природных источников, исследователи давно пришли к выводу, что химические свойства актиния очень близки к химическим свойствам лантана и редкоземельных элементов. Актиний, как и редкоземельные элементы, образует не растворимые в воде фторид, гидроокись, оксалат, карбонат и фосфат. Физические свойства галогенидов актиния, насколько они изучены, очень похожи на свойства соответствующих галогенидов редких земель. Все те чистые соединения актиния, которые были приготовлены и охарактеризованы, изострук-турны с соответствующими соединениями лантана. Кристаллохимические исследования показали, что размеры иона Ас наибольшие из всех известных трехзарядных ионов радиус его равен 1,10 А. Ионный радиус лантана равен 1,06 А, небольшое различие ионных радиусов (0,04 А), наряду с тем фактом, что оба иона имеют аналогичную электронную структуру инертного газа, в равной мере обусловливает сходство химических свойств. Заключение о подобии актиния и редких земель подтверждается его поведением при соосаждении с носителями. Из табл. 2.2 очевидно, что химические свойства Ас , о которых можно судить на основании наблюдаемого поведения при соосаждении с носителями, действительно [c.19]


    АКТИН — белок, входящий в состав сократительных алементов мышечного волокна извлекается водой из обезжиренной и обезвоженной ацетоном мышечной ткани. Молекулы А. существуют в двух формах деполимеризованной, или глобулярной (приближающейся к шарообразной), и полимеризованной, или фибриллярной (нитевидной). Мол. в. глобулярного А. 35 10 — 10 10 . Взаимный переход этих форм связан с воздействием определенных концентраций р-ров солей (до 0,1 М в случае одновалентных ионов, до 0,005 М — в случае двухвалентных) или изменением pH нри этом обязательно также присутствие каталитич. количеств Mg . Образование фибриллярного А. сопровождается резким повышением вязкости р-ров А. От связанной глобулярным А. аденозинтрифосфорной к-ты нри полимеризации отщепляется 1 молекула фосфата и поэтому фибриллярный А. оказывается связаннь]м уже с аденозиндифосфорной к-той. А. сте-хиометрически соединяется с другим белком мышечной ткани миозином, образуя актомиозин — главный сократительный белок мышц. [c.49]

    Белки эритроцитов представлены гемоглобином и небольшим количеством белков стромы. В мембране эритроцитов есть два основных типа белков поверхностные и интегральные. Поверхностные белки локализованы на внутренней цитоплазматической поверхности мембраны. К ним относятся глицеральдегид-З-фосфат-дегидрогеназа, актин, спектрин. Цепи спектрина образуют разветвленную волокнистую сеть. Спектрин стабилизирует и регулирует вместе с актином форму мембраны эритроцитов, которая изменяется при прохождении клеток через капилляры. Интегральные белки расположены внутри мембраны. Их можно отделить от нее только с помощью детергентов или органических растворителей. В мембране имеется анионный канал, делающий ее проницаемой для НСО3 и СГ. В формировании канала участвует димерный белок, составляющий 1/4 от общего количества белка в мембране. Этот канал необходим для транспорта СО2 эритроцитами. [c.432]

    Миозин является высокомолекулярным фибриллярным белком с молекулярной массой 490 ООО. Фибриллярная нить миозина достаточно длинная (около 160 нм) и неоднородна. Она имеет утолщение — головку и длинный хвост, состоящий из двух полипептидных цепей, закрученных относительно друг друга в двойную спираль (рис. 90, а). Головка имеет глобулярную форму и выступает относительно основной части белка. На ней находятся центры связывания с актином и с АТФ. Часть молекулы миозина в области головки обладает ферментативной аденозинтрифосфатазной активностью (АТФ-аза), способной расщеплять АТФ до АДФ и фосфата (Н3РО4) с высвобождением энергии. Длинный "хвост" молекулы миозина состоит из легкого (1) и тяжелого (2) меромиозина. Последний имеет гибкие шарнирные участки, которые играют важную роль в образовании толстых миозиновых нитей миофибрилл и в сокращении мышц. Многочисленные молекулы миозина образуют толстые нити в миофибриллах скелетных мышц. [c.240]

    Присоединение головки миозина к актину активируется АТФазным центром, при этом АТФ гидролизуется, АДФ и неорганический фосфат покидают активный центр. В результате изменяется конформация миозина возникает напряжение, стремяш,ееся уменьшить угол между головкой и хвостом молекулы миозина. Далее АТФазный центр может присоединить новую молекулу АТФ, в результате чего сродство миозиновой головки к актину уменьшается. Миозин возвращается в исходное состояние, и начинается новый цикл взаимодействия с актином. Необходимо отметить, что каждая головка миозина генерирует очень маленькое тянущее усилие (в несколько пиконьютонов), но сумма этих маленьких усилий может создавать довольно большие напряжения. Сотни миозиновых головок каждой миозиновой нити, втягивая актиновую нить, работают одновременно. Предельное сокращение мышцы развивается в сотые доли секунды (порядка 0,02 с). Сила сокращения зависит от количества миозиновых головок, включенных в работу. [c.481]

    IV стадия — поиск нового актинового центра, первоначальное нестереоспецифиче-ское связывание миозин-продуктного комплекса на одной из глобул актина. V стадия — образование прочной стереоспецифической связи с двумя глобулами актина, сопровождающееся закрытием щели и диссоциацией фосфата. Уход фосфата, в свою очередь, вызывает обратную конформационную перестройку в моторном домене, сопровождающуюся движением С-конца миозиновой головки относительно [c.255]

    Обычно актин выделяют, обрабатывая порошок высушенной мышечной ткани сильно разбавленным солевым раствором, который вызывает диссоциацию актиновых филаментов на их глобулярные субъединицы. Каждая субъединица представляет собой одну полипептидную цепь длиной в 375 аминокислотных остатков, с которой нековалентно связана одна молекула АТР. Такой актин называют глобулярным, или G-актшом. При полимеризации актина связанный АТР гидролизуется, отщепляя концевой фосфат, а актин образует филаменты, называемые фибриллярным актином (F-актшом). Полимеризацию можно вызвать, просто повысив концентрацию соли до уровня, близкого к физиологическому при этом раствор актина, лишь ненамного более вязкий, чем вода, быстро густеет по мере образования филаментов. [c.258]

    Происхоляший при мышечном сокрашении гидролиз АТР - прямое следствие взаимодействия между актином и миозином. Миозин и сам по себе действует как АТРаза, но в очищенном виде он работает сравнительно медленно. Для завершения полного цикла гидролиза одной молекулы АТР каждой молекуле миозина требуется примерно полминуты. При этом скорость-лимитирующей стадией оказывается не связывание АТР с миозином и не гидролиз концевой фосфатной связи (оба процесса протекают быстро), а освобождение продуктов гидролиза-ADP и неорганического фосфата - из комплекса с миозином. Оставаясь нековалентно связанными с его молекулой, они препятствуют присоединению и последующему гршролизу новых молекул АТР [c.261]

Рис. 11-16. Эта схема показывает, каким образом молекула миозина может использовать энергию гидролиза АТР, чтобы двигаться по актвому филаменту от его минус-конца к плюс-концу. При переходе из состояния 2 в состояние 3 присоединение миозиновой голов-в к актину приводит к тому, что она теряет связанный с ней фосфат и более прочно прикрепляется актиновому филаменту. Вслед за этим форма головки претерпевает пока еще не очень понятные изменения, которые сопровождаются высвобождением ADP и заставляют миозиновую головку подтянуться относительно актинового филамента (рабочий ход) Каждая из пары головок на молекуле миозина работает независимо от другой Рис. 11-16. Эта схема показывает, каким <a href="/info/512200">образом молекула</a> миозина может <a href="/info/1435378">использовать энергию гидролиза</a> АТР, чтобы двигаться по актвому филаменту от его минус-конца к плюс-концу. При переходе из состояния 2 в состояние 3 присоединение миозиновой голов-в к актину приводит к тому, что она теряет связанный с ней фосфат и более прочно <a href="/info/1886283">прикрепляется актиновому филаменту</a>. Вслед за <a href="/info/111943">этим форма</a> головки претерпевает пока еще не очень понятные изменения, которые сопровождаются высвобождением ADP и заставляют <a href="/info/510026">миозиновую головку</a> подтянуться относительно <a href="/info/1339102">актинового филамента</a> (рабочий ход) Каждая из пары головок на <a href="/info/1435305">молекуле миозина</a> работает независимо от другой
    Хогя и S-1, и ТММ сами обладают АТРазной активностью, но при добавлении F-актина эта активность возрастает в 100—200 раз. Показано, что F-актин резко ускоряет освобождение продуктов действия миозиновой АТРазы—ADP и неорганического фосфата. Таким образом, хотя F-актин сам по себе не влияет на гидролиз АТР, его способность стимулировать освобождение продуктов АТРазной реакции обеспечивает значительное увеличение общей скорости катализа. [c.336]

    Расслабление гладких мышц происходит, когда 1) содержание ионов Са-+ в саркоплазме падает ниже 10 моль/л 2) Са- отсоединяется от кальмодулина, который в свою очередь отделяется от киназы легкой цепи миозина, вызывая ее инактивацию 3) нового фосфорилирования легкой цепи р не происходит, и протеинфосфатаза легкой цепи, которая постоянно активна и не зависит от кальция, отщепляет от легкой цепи р ранее присоединившиеся к ней фосфаты 4) дефосфорилированная легкая цепь р миозина ингибирует связывание миозиновых головой с F-актином и подавляет активность АТРазы 5) миозиновые головки в присутствии АТР отделяются от F-актина. а нов горное их связывание произойти не может из-за присутствия в системе дефосфорили-рованной легкой цепи р. В результате описанных событий происходит расслабление мышцы. [c.339]

    Одна из пар легких цепей миозина скелетных мышц также может подвергаться фосфорилированию, которое, однако, не влияет на активируемую актином миозиновую АТРазу (что характерно для миозина гладких мьшщ). Предполагается, что фосфат на легких цепях миозина может образовывать хелат с Са + (связанным с комплексом тропомио-зин-ТпС-актин), увеличивая тем самым скорость образования поперечных мостиков между миозино-выми головками и актином. [c.340]

    Структура актиновых нитей. В состав тонких филаментов входят белки актин, составляющий, как уже отмечалось, основу нитей, тро-помиозин и тропонин. Стандартная процедура выделения актина заключается в экстракции высушенной и измельченной мышечной ткани разбавленным солевым раствором. Такая обработка расщепляет актиновые филаменты на глобулярные субъединицы, каждая из которых образована одной полипептидной цепью с молек. массой 41,8 кДа это глобулярный актин или О-актин. С каждой молекулой О-актина связан один ион Са +, стабилизирующий ее глобулярную конформацию. Кроме того, с О-актином невалентно ассоциирована одна молекула АТР. При невалентной полимеризации глобулярного актина концевой фосфат АТР отщепляется и образуется фибриллярный актин или Р-актин. Полимеризацию можно вызвать повышением концентрации соли до уровня, близкого к физиологическому. Процесс не требует затраты энергии, хотя и сопровождается гидролизом АТР, который значительно повышает скорость полимеризации и оказывает влияние на его динамику. По данным электронной микроскопии актиновые филаменты состоят из двух цепей глобулярных молекул, длина которых равна 65 А, а толщина в самой широкой части 40 А. Цепи Р-актина образуют двойную спираль, имеющую 13 молекул в шести витках, повторяющихся каждые 360 А [452]. [c.122]

    Конформационная перестройка миозина сопровождается аллостери-ческим эффектом - смыканием длинной узкой щели, находящейся на границе между толстой и тонкой половинами грушевидной головки. Результатом становятся сближение актина с нуклеотидным центром миозина и высвобождение ADP и неорганического фосфата. В этом причина того, почему миозин представляет собой актин-зависимую АТРазу. Давно было замечено, что этапом, лимитирующим скорость каталитической реакции, является не связывание молекул АТР в активном центре и не собственно гидролиз, а освобождение продуктов ферментативной реакции, остающихся прочно связанными с миозином, что и препятствует началу следующего каталитического акта [442, 443]. АТРазная активность очищенного миозина невелика для гидролиза одной молекулы АТР ферменту требуется 30 с. В присутствии актина каждая молекула миозина способна гидролизовать от 5 до 10 молекул АТР в секунду. [c.128]

    Стандартная процедура выделения актина заключается в экстракции высушенной и измельченной мышечной ткани разбавленным солевым раствором. Такая обработка расщепляет актиновые филаменты на глобулярные субъединицы, каждая из которых образована одной полипептидной цепью с мол. массой 41 800 это так называемый глобулярный актин, или G-актин. С каждой молекулой G-актина прочно связан один ион Са , стабилизирующий ее глобулярную конформацию кроме того, к ней нековалентно присоединена одна молекула АТР. При полимеризации G-актина концевой фосфат АТР отщепляется. В результате полимеризации образуются актиновые филаменты, называемые также фибриллярным актином или F-актином. Полимеризацию можно вызвать простым повьш1ением концентрации соли до уровня, близкого к физиологическому раствор актина, который был лишь ненамного более вязок, чем чистая вода, быстро становится очень вязким в результате агрегации молекул G-актина и образования филаментов. [c.79]


Смотреть страницы где упоминается термин Актиния фосфат: [c.434]    [c.506]    [c.257]    [c.437]    [c.506]    [c.423]    [c.355]    [c.174]    [c.49]    [c.231]    [c.232]    [c.76]    [c.298]    [c.47]    [c.480]    [c.238]    [c.285]    [c.337]    [c.180]    [c.19]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Актин

Актиний



© 2025 chem21.info Реклама на сайте