Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные группы в белках

    Белки делятся на две основные группы, а именно простые белки, содержащие только аминокислотные остатки, и составные белки, которые содержат также другие компоненты. Так, липо-протеиды содержат еще липиды, гликопротеиды — сахариды, фосфопротеиды — фосфорную кислоту, нуклеопротеиды — нуклеиновые кислоты, металлопротеиды — ионы металлов. Белки, молекулы которых содержат небелковую окрашивающую составляющую (гем, хлорофилл, флавины), относят к хромопротеидам. [c.194]


    Наконец, следует указать на своеобразие радикалов, которые являются полифункциональными, несущими свободные МН,-, СООН-, ОН-, 8Н-группы и, как было указано, определяют структуру (пространственную) и многообразие функций молекул белка. Взаимодействуя с окружающими молекулами растворителя (Н,0), функциональные группы (в частности, КН,- и СООН-группы) ионизируются, что приводит к образованию анионных и катионных центров белковой молекулы. В зависимости от соотношения ионов молекулы белка получают суммарный положительный (+) или отрицательный (—) заряд с определенным значением изоэлектрической точки. [c.52]

    Имидазольные группы боковых цепей гистидина составляют часть активного центра многих ферментов. Как и другие основные группы белков, они могут также связывать ионы металлов [c.83]

    Полисахариды соединительных тканей (хондроитинсульфаты, гепарин и др., см. стр. 541) образуют с белками этих тканей комплексы, которые долгое время считали комплексами ионного типа, образованными сульфогруппами сульфированных углеводов и основными группами белка. В настоящее время, однако, установлено, что в действительности это белково-углеводные соединения, связанные ковалентной, хотя и довольно лабильной, связью. Комплекс хондроитинсульфата с белком, который был выделен из гиалинового хряща в условиях, исключающих гидролитический разрыв связей , имеет молекулярный вес, достигающий нескольких миллионов. Он содержит, по-видимому, около 20 цепей хондроитинсульфата, присоединенных к белковой цепи , т. е. относится к гликопротеинам типа П1. Результаты мягкого щелочного гидролиза свидетельствуют о наличии 0-гликозидных связей в этом гликопротеине , однако возможно, что они не являются единственным типом связи . После обработки гиалуронидазой, расщепляющей углеводные цепи, и папаином, расщепляющим белковую цепь, выделены гликопептидные фрагменты, содержащие галактозу, ксилозу, а также аминокислоты, в том числе серин . Исследования, проводимые в настоящее время, должны дать окончательный ответ на вопрос о природе связи в комплексе. [c.580]

    Читатель может и сам поразмыслить, какая механика нужна для того, чтобы расщепить АТР и произвести сокращение. При этом небесполезно взглянуть и на структуру самого АТР. Прежде всего обратите внимание на то, что три-фосфатная группа содержит много отрицательных зарядов, взаимно отталкивающих друг друга. Представьте далее, что должно произойти, когда молекула АТР вытеснит ADP и Pi из связанной с актином миозиновой головки. При этом может нарушиться связь белок—белок вероятнее всего в какой-то определенной точке а поверхности их контакта индуцируется электростатическое отталкивание. Подумайте об образовании АТР в процессе окислительного фосфорилирования и о возможной роли протонов в синтезе АТР (разд. Д, 9,в). Не могут ли протоны оказать какое-то влияние на белок, окружающий молекулу АТР, в обратном процессе Подумайте о действии Mg +, связанного в комплексе с полифосфатной группой АТР, а также о том, что может случиться, если с соседней группой белка свяжется ион Са . Примите во внимание данные о возможном фосфорилировании боковых цепей белка на промежуточных стадиях процесса. Что произойдет, если будет фосфорилирована боковая цепь гистидина, связанная водородной связью с пептидным остовом в концевом участке спирали Автор этой книги не смог соединить все эти соображения в цельный механизм работы мышцы, но, может быть, кому-то из читателей удастся это сделать  [c.418]


    А.Я. Данилевский впервые разделил экстрагируемые из мышц белки на 3 класса растворимые в воде, экстрагируемые 8—12 % раствором хлорида аммония и белки, извлекаемые разбавленными растворами кислот и щелочей. В настоящее время белки мышечной ткани делят на три основные группы саркоплазматические, миофибриллярные и белки стромы. На долю первых приходится около 35%, вторых—45% и третьих—20% от всего количества мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой. [c.648]

    Изменения в серологической специфичности белков при денатурации также свидетельствуют о нарушении их специфической структуры. Денатурированный яичный альбумин гораздо хуже реагирует со специфическим антителом, и количество образуемого им соединения составляет лишь 1—2% того количества, которое образуется нативным яичным альбумином [154, 159]. Тот факт, что сложное специфическое расположение пептидных цепей меняется при денатурации, сам по себе не вызывает удивления. Почти каждый физический или химический агент способен менять лабильную структуру нативных белков. Денатурирующее действие минеральных кислот и едких щелочей может быть объяснено их влиянием на ионные группы белков. Минеральные кислоты превращают отрицательную группу —СОб в группу [c.150]

    Опасность любых реакционно активных соединений в значительной степени зависит от их стабильности. В этом плане ионы О2 весьма опасны, так как время их жизни в водной среде продолжительнее, чем у остальных Ог-производных радикалов. Поэтому экзогенно возникшие О могут проникать в клетку и (наряду с эндогенными) участвовать в реакциях, приводящих к различным повреждениям перекисном окислении ненасыщенных жирных кислот, окислении 8Н-групп белков, повреждении ДНК и др. Токсичность супероксидных анионов может увеличиваться за счет вторичных реакций, ведущих к образованию гидроксидных радикалов (0Н ) и синглетного кислорода ( 02). [c.331]

    При избытке водородных ионов все свободные аминогруппы белка превращаются в положительно заряженные аммониевые группировки (ср. с диссоциацией аминокислот, стр. 282) белковые молекулы в этих условиях являются катионами и при пропускании тока через кислый раствор белка переносятся к катоду. При избытке же гидроксильных ионов диссоциируют все свободные карбоксильные группы белка, молекулы его приобретают отрицательные заряды, т. е. становятся анионами, и под действием тока переносятся к аноду. [c.295]

    Кинетические характеристики 8Н-групп белка и их изменение под влиянием различных воздействий позволяют анализировать изменения конформации белковой молекулы, которые происходят при связывании субстратов, ионов-активаторов, аллостерических модификаторов, детергентов, при изменении температуры и т. д. [c.362]

    Электростатические силы играют очень важную роль во взаимодействиях между молекулами и часто являются причиной изменения их конформации например, притяжение между группами —СОО и —ЫНз весьма существенно для взаимодействий между молекулами белка. С карбоксильными группами белков и углеводов в растворе часто взаимодействуют ионы кальция, что иногда приводит к переходу растворов этих веществ в гелеобразное состояние (примером может служить агароза, гл. 2, разд. В.5). Катион Са , обладающий двойным зарядом, может играть роль мостика , соединяющего две карбоксильные или иные полярные группы. [c.245]

    Недавно выяснилось, что протоны, способные переходить от субстрата к основным группам белка, не обязательно должны быстро обмениваться с растворителем (см. разд. И,2). Действительно, было показано, что протон, отщепляемый фумаразой от малата, удерживается ферментом на протяжении относительно длительного промежутка времени. Скорость обмена протона между малатом и растворителем ниже скорости обмена между связанным фумарат-ионом на поверхности фермента и другой молекулой субстрата, находящейся в среде [115]. Так, оказалось, что суммарная скорость обмена определяется скоростью отщепления продуктов от молекулы фермента и что мы до сих пор не знаем, предшествует ли удаление протона отщеплению ОН или следует за ним. Однако имеется и третья возможность — протон и гидроксильная группа могут присоединяться одновременно по согласованному механизму [115]. [c.148]

    Осмотический метод. Применение осмотического метода наталкивается на ту трудность, что белки, будучи амфотерными ионами, существуют в кислом растворе в виде катионов, а в щелочном растворе —в виде анионов. В кислом растворе присутствуют также неорганические анионы (например, С1 ), а в щелочном растворе — катионы (например, Na+). Эти ионы с небольшим молекулярным весом могут диффундировать через мембраны, не проницаемые для макроионов белка, увеличивая осмотическое давление по ту сторону мембраны, где находится белок (эффект Доннана), Вследствие этого осмотическое давление изменяется с изменением pH, так как число кислотных или основных групп белка тоже зависит от pH например, для 1,2%-ного раствора гемоглобина имеем [c.428]


    Трансферрины (сидерофилины) — группа сложных белков, полученных из разных источников и характеризующихся способностью специфично, прочно и обратимо связывать ионы железа Fe (III) и других переходных металлов. Наиболее подробно из этой группы белков изучен трансферрин сыворотки крови. Функция трансферрина заключается в транспорте ионов железа в ретикулоциты, в которых осуществляется биосинтез гемоглобина. Система трансферрин—ретикулоцит считается весьма перспективной для изучения взаимодействия металла с белком и белковой молекулы с клеткой. [c.85]

    И структурные белки. Несомненно, что их роль не только механическая. Доказано, что структурным белкам присущи и каталитические функции. Эти функции особенно ярко проявляются у мышечного сократительного белка миозина. Исследования В. В. Эн-гельгардта и Н. А. Любимовой показали, что миозин ускоряет взаимодействие с водой (т. е. гидролиз) важнейшего аккумулятора энергии — аденозинтрифосфорной кислоты (АТФ). При этом получается аденозиндифосфорная кислота и фосфат. Энергия реакции используется мышцей, во время работы которой нити белка миозина сокращаются. Следовательно, этот белок выполняет двойную нагрузку он регулирует освобождение энергии и он же потребляет энергию, сокращаясь в процессе работы мышцы. Молекула миозина представляет собой длинную цепь — ее длина равна примерно 160 нм, а молекулярная масса достигает 600000, Кроме миозина, известны и другие мышечные белки (актин, тро-помиозин), Для того чтобы эти белки могли осуществлять обратимое сокращение, необходимо присутствие катионов металлов, вообще активно поглощаемых мышечными белками. Для работы мышцы требуются ионы калия, кальция, магния, нужен также запас фосфатов, используемых для синтеза АТФ, Связывание ионов металлов и водорода с ионными группами белков сильно влияет на взаимодействие участков цепи и приводит к изменению ее длины. Однако механизм мышечного сокращения более сложен и, по-видимому, связан с особым расположением нитей миозина и актина в мышце, позволяющих частицам актина при работе мышцы скользить вдоль нитей миозина. Из числа растворимых белков особенно важны альбумины и глобулины. [c.62]

    В пространственном строении белков большое значение имеет характер радикалов (остатков) R в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макромолекулы белка и обусловливают гидрофобные (см. ниже) взаимодействия, полярные радикалы, содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) взаимодействия. Полярные неионогенные радикалы (например, содержащие спиртовые — ОН-группы, амидные группы) могут располагаться как на поверхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей. [c.11]

    Важная структурная особенность, существенно влияющая иа свойства протеогликанов соединительной ткани,— наличие в полисахаридной цепи сульфатных групп, придающих молекуле характер полианиона. Локализуясь иа внешней поверхности клеток и образуя таким образом дополнительную оболочку, эти биополимеры заметно влияют иа транспорт ионов и белков в клетки. [c.510]

    Монослой белков на поверхности раздела вода — масло растянуты особенно заметно [40]. Такое расширение пленки вызывается снижением вандерваальсового взаимодействия между неполярными боковыми цепями в присутствии углеводородных молекул. Полипептидный остов при этом остается на поверхности раздела вследствие гидрофильного характера пептидных связей, а также полярных и ионных групп боковых цепей. [c.297]

    Другие типы моноядерного комплексообразования в водных растворах включают связывание ионов металла белками или синтетическими полиэлектролитами. Эти системы удобно рассматривать, предположив, что ионы металла выступают в качестве лигандов по отношению к центральному полимеру [33, 67]. Комплексы могут также образовываться между двумя органическими ионами, например ионами анилиния и пикриновой кислоты [58], или между двумя белками. В окислительновосстановительном равновесии электрон можно рассматривать как лиганд, а состояние наивысшей степени окисления — как центральную группу [11, 45]. Смешанные моноядерные комплексы, которые содержат более одного типа лигандов, обсуждаются в гл. 18. [c.17]

    Электростатическое взаимодействие между белком и ионитом определяется количеством заряженных групп белка, его суммарным зарядом, дипольным моментом, ориентацией макромолекулы на поверхности сорбента, зарядом сорбента и другими факторами. Так как эти факторы для отдельных белков различны, то у них разная сорбируемость, на чем и основано их разделение. Сорбируемость белков наибольшая в бессолевой среде или в разбавленных буферных растворах. В присутствии солей сорбируемость снижается, ионы соли вытесняют ион белка или, взаимодействуя с ним, изменяют его электрический заряд. Интервал концентрации нейтральной соли, например ЫаС), в котором сорбируемость данного белка изменяется от минимальной до максимальной, называется интервалом перехода. Каждый белок [c.124]

    Далее было предположено, что некоторые катионы, такие как ион кальция, могут вступать в реакцию с гидроксильными группами белка с образованием положительно заряженных групп  [c.79]

    Растворяющее действие солей особенно четко проявляется в тех случаях, когда белок нерастворим в дестиллированной воде. Так эвглобулины сыворотки крови или растительные глобулины нерастворимы в воде, но легко растворяются после добавления хлористого натрия к суспензии белка в воде. Способность нейтральных солей стимулировать растворение белков объясняется электростатическим взаимодействием между их ионами и заряженными группами белка [37]. Как упоминалось в гл. V, растворы белка в изоэлектрической точке содержат не только изоэлектрические молекулы Р с нулевым свободным зарядом, но также анионы и катионы белков с формулами Р , Р , Р. .. и Р+, Р++,. .. Растворимость этих ионов выше, чем растворимость белка в изоэлектрической точке [36]. Так, например, вычисленная растворимость незаряженных молекул карбоксигемоглобина лошади равна г па л воды при ионной силе, равной нулю, в то время как истинная растворимость смеси незаряженных и заряженных молекул составляет 17 г на 1 л [36]. Количество ионизированных молекул белка увеличивается не только при добавлении кислот или оснований, по также и при добавлении нейтральных солей [36]. Это увеличение может быть причиной повышения растворимости белков, т. е. причиной растворяющего действия солей. Нет необходимости считать, что при этом образуются постоянные прочные связи между ионами белка и ионами добавленных солей [37]. Вероятно, каждая из ионных групп белка окружается, в силу ее электростатического действия, атмосферой солевых ионов противоположного знака. Трудно решить, ведет ли это к образованию постоянных связей между белком и неорганическими ионами (см. гл. V). [c.113]

    На фиг. 30 схема / изображает молекулу нативного белка, имеющую только внутримолекулярные солевые мостики, схема II представляет молекулы денатурированных белков, соединенные друг с другом мсжмолекулярными солевыми мостиками. На этих схемах образование структур, протекающее фактически в трех измерениях, представлено на плоскости, т. е. в двух измерениях. Гипотеза, приписывающая свертывание белков образованию солевых мостиков между ионными группами белков, принимается, однако, далеко не всеми исследователями. Некоторые из них считают, что нерастворимость денатурированных белков связана с пространственным перераспределением полярных и неполярных групп, которое выражается в переносе неполярных, гидрофобных групп на поверхность молекулы [134, 175, 176]. [c.155]

    Природа сил, действующих в сложных белках, изучалась путем соединения белков с различными типами веществ, в частности с анионами и катионами. Соединение малых неорганических ионов с белками уже рассматривалось в гл. V (см. стр. 86). Там указывалось, что ионные группы белков соединяются с катионами кальция, анионами фосфата и другими неорганическими ионами путем образования солеобразных связей. Подобные же связи образуются и in vitro так, например, инсулин легко соединяется с анионом роданистых солей [6]. [c.221]

    Как уже упоминалось, подвижность белковых частиц в электрическом поле определяется потенциалом электрического заряда на их поверхности и, по-видимому, не зависит от ионных групп, скрытых внутри молекулы. Это было установлено экспериментально. Частицы кварца, покрытые белком, ведут себя при электрофорезе так же, как и белок, из которого составлен покрывающий слой. Так как этот потенциал проявляется только при движении частицы или окружающего раствора в электрическом поле, то он называется электрокинетическим потенциалом или е-потенпиалом. Согласно теории Гуи, е-потенциал возникает благодаря ионной атмосфере, окружающей белковую молекулу, причем каждая ионная группа белка притягивает один или большее число ионов противоположного знака. Толщина двойного слоя зависит от ионной силы согласно следующему уравнению  [c.50]

    Активные группы. — Белки являются характерными амфотер-ными соединениями. В нейтральном растворе основные и карбоксильные группы большей частью ионизированы, как это происходит с биполярными ионами аминокислот. В изоэлектрической точке диссоциация кислотных и основных групп одинакова, растворимость и электрофоретическая подвижность минимальна. Ниже приведена формула гипотетического гептапеп гида, написанная по общепринятым правилам слева аминная концевая группа, справа — карбоксильная  [c.688]

    Эмульсия — коллоидная дисперсия одной жидкости в другой. Наи более известные эмульсии — это эмульсии масла в воде или воды в масле. Эмульсии стабилизируются в присутствии эмульгирующих агентов, например мыла, белков, солей желчных кислот, смол и углеводов. Молекулу эффективно действующего эмульгирующего агента обычно можно описать как молекулу, один конец которой растворим в масле, а другой в воде. Концом молекулы, растворимым в масле, может быть алкильная цепь, а водорастворимым концом — ионная группа (карбок-силат-ион, ион аммония) или группа, способная образовать водородную связь, например гидроксил. Эмульгирующие агенты, подобные мылу, используют для диспергирования в воде твердых жиров и жидких масел. [c.270]

    Ясли рибосомные частицы инкубировать при высоких ионных силах, йддерживая также и достаточно высокую концентрацию Mg2+, то компактность частиц сохраняется, но наблюдается диссоциация рибосомных лко5. Очевидно, что это происходит прежде всего как результат деЯабления удержания белков на РНК вследствие подавления их электростатических взаимодействий. Как в условиях инкубации при достоянной высокой концентрации соли, так и при ступенчатом повышении ионной силы имеет место последовательное отщепление Групп белков с образованием серии белок-дефицитных производных, Т. е. ступенчатая разборка рибосомных частиц. [c.127]

    Рассмотрению возможностей обратнофазовой гидрофобной хроматографии белков в основном посвящен сравнительно недавно опубликованный обзор [Rubinstein, 1979]. Основные его выводы совпадают с тем, что было сказано выше при рассмотрении обратнофазовой гидрофобной хроматографии пептидов. Для белков с молекулярной массой в интервале 12—30 тыс. Дальтон автор отдает предпочтение силикагелям, модифицированным октилсиланом (Са). В качестве органического компонента элюента, по его мнению, следует предпочесть градиент концентрации пропанола, вплоть до 40%-ной концентрации, если позволяет растворимость белка. Для получения узких пиков рекомендуется в качестве водного компонента использовать буфер высокой (примерно 1 М) концентрации, подавляющий ионное взаимодействие белка с силанольными группами матрицы. При pH 5—6 разрешение получается обычно хуже, чем при pH 4 (формиатно-пиридиновый буфер) или 7,5 (Na-ацетатный буфер). Существенно указание на то, что скорость элюции следует снизить до 60—90 мл/см Ч. Продолжительность фракционирования белков при этом остается относительно небольшой — 1—3 ч. Белки целесообразно разделить предварительно на группы [c.210]

    Биологическая активность фермента в ходе хроматографии может измениться (как уменьшиться, так иногда в возрасти) в силу ряда дополнительных причин. Например, кажущееся увеличение активности фермента может быть результатом его отделения от протеаз. Снизиться активность может как в результате истинной денатурации илп окисления 8Н-групп белка, так и при отделении апофермепта от кофакторов. Иногда инактивация обусловлена разъединением двух или нескольких последовательно работающих ферментов. Такого рода кажущиеся инактивации могут быть обнаружены при объединении хроматографических фракций, когда активность фермента восстанавливается. Для сохранения биологической активности липофильных белков мембран в элюент иногда приходится добавлять спирт или ацетон. При этом может возникнуть определенная неравномерность распределения органического растворителя между жидкостью внутри и снаружи гранул — ионы сорбента, гидратируясь, оттягивают на себя воду. Следствие этой неравномерности — наложение на ионный обмен эффекта распределетельной хроматографии. Для сохранения биологической активности ферментов в элюент часто добавляют глицерин (до 25%) или этиленгликоль (до 5%). [c.292]

    Один из возможных результатов переноса фосфатной группы на функциональную группу белка состоит в индуцировании конформаци- онного изменения в молекуле белка. Действительно, имеются данные, весьма убедительно свидетельствующие о наличии таких изменений при действии АТР-зависимых ионных насосов (гл. 5, разд. Б,2,в) и при мышечной работе (дополнение 10-Е). Конформационные изменения могут также возникать в результате фосфорилирования регуляторных центров белков. Вполне возможно, что фосфорилирование имидазольной группы, соединенной водородной связью с группой С = 0 амидной группы полипептидной цепи белковой молекулы, ведет к таутомериым превращениям, аналогичным тому, которое было приведено в уравнении (6-84). Оно может способствовать конформационному изменению или может переводить белок в состояние, богатое энергией , способное самопроизвольно изменять свою форму, как это имеет место при мышечных сокращениях. [c.139]

    Монослой разнообразных типов белков характеризуются очень сходными кривыми зависимости давление — площадь. Площадь предельно сжатого монослоя независимо от типа белка достигает примерно 1 ж 1мг. Глобулярные белки, которые обычно используются в этих исследованиях, состоят из одной или нескольких полипептидных цепей, содержащих небольшое число (или совсем не содержащих) простетических групп. При этом цепи свертываются таким образом, что имеющиеся в молекуле полярные или ионные группы оказываются расположенными с внешней стороны глобулы. Это обеспечивает растворимость белка в воде. Белки, как известно, состоят примерно из 20 сортов аминокислотных остатков, молекулярный вес которых равен в среднем 120. Важно отметить, что белки являются полимерами особого типа, остатки которых могут растворяться как отдельные аминокислоты, но не совмещаются с нолипептидными цепями, аналогично тому как некоторые мономеры не растворяются в полимерах. Это может быть причиной того, что белки растекаются в монослой, характеризующиеся очень сходными кривыми п — А, имеющими практически одинаковую предельную площадь на остаток. Когда молекулы белка оказываются на поверхности, они развертываются таким образом, что полярные (ионные) группы обращаются к воде и принимают Р-конфигурацию. Это затрудняет получение информации о структуре белковых молекул из построения графиков давление — площадь. [c.296]

    Фактором, благоприятствующим гидрофобным взаимодействиям, является изменение энтропии, точнее говоря, ее прирост. В случае глобулярных белков полярные и прежде всего почти все ионные группы находятся на поверхности, чем облегчается гидратащ1я молекулы белка, имеющая большое значение для стабилизации пространственной структуры. У некоторых белков удаление воды неизбежно связано с их денатурацией. Большая часть неполярных остатков, напротив, находится внутри молекулы белка. Они укладываются плотно один к другому и практически выдавливают воду из первоначально еще непрочной клубковой структуры полипептидной цепи, что приводит к компактности и стабильности гидрофобного ядра. Само собой разумеется, что часть функциональных (ионных) групп боковых цепей находится внутри молекулы белка. Группы, оказавшиеся замаскированными, не подвергаются внешним воздействиям (изменение pH, реакции модификации и др.). Более того, измененная реакционноспособность таких функциональных групп, имеющая значение для каталического действия ферментов, определяется гидрофобным окружением и взаимодействием с [c.382]

    Многие белки в противоположность приведенным выше примерам связывают ионы металлов либо временно, либо в течение всего времени их существования в организме. Ранее уже упоминался пример временного связывания Са + в связи с протеолитической активацией протромбина и других компонентов системы свертывания крови (см. разд. 24.2.1.2). Иной случай представляют щелочные фосфатазы и фосфокиназы, где, по-видимому, для экранирования отрицательных зарядов фосфатной группы для облегчения атаки атома фосфора нуклеофилом требуется ион двухвалентного металла типа Mg + или Zn +. Более постоянное связывание ионов металлов белками может служить для выполнения одной из указанных ниже целей. Ионы Са + предохраняют трипсин от автолиза. Конкавалин А (см. ниже) не связывает производных глюкозы до тех пор, пока не свяжет предварительно один ион Са + и один ион Мг 2+ на субъединицу. В данном случае катионы, по-видимому, осуществляют подгонку конформации молекулы, образуя центр связывания глюкозы. Ионы металлов принимают также участие в формировании активных центров ферментов. По- [c.561]

    Хитин В природных источниках редко находится в индивидуальном состоянии обычно в панцирях крабов и омаров он связан с белком, в виде комплекса или ковалентными связями [165]. Это свойство может быть объяснено недавно открытым фактом, что в большинстве хитинов не все аминогруппы /V-ацетилированы, поэтому они могут выступать в качестве основных групп и образовывать комплексные соединения с другими молекулами, имеюшиып соответствующим образом расположенные ионные группы. Хитин не растворяется в воде и многих органических растворителях. Это затрудняет установление его строения и проявляется, например, в виде низкой реакционной способности при метилировании. Большинство образцов хитина в результате обработки минеральной кислотой при выделении частично Л/-дезацетилированы и имеют более низкую молекулярную массу, чем нативный хитин. Рентгеноструктурный анализ кристаллического хитина показал, что элементарное звено его макромолекулы состоит из двух цепей в изогнутой конформации с меж- и внутримолекулярными водородными связями, подобно целлюлозе (см. разд. 26.3.3,2). [c.258]

    Прочные комплексы с азотсодержащими группировками белка образуют ионы меди и железа. Ионы кальция и магния преимущественно связываются с карбоксильными группами белка. Фермент алкогольдегидрогеназа содержит в своем составе цинк, прочно связанный с серосодержащими аминокислотными остатками белкового компонента макромолекулы. Ферридоксины переносят электроны при участии атомов железа, прочно связанных с остатками цистеина. В некоторых истинных металлоферментах присутствует более одного атома металла. Примером тому является супероксиддисмутаза — фермент, содержащий в своем составе медь и цинк. [c.63]

    Влияние pH на активность ферментов. Ферменты, как и другие белки, имеют большое число ионных групп. Изменение состояния ионизации таких групп при сдвиге pH может оказывать сильное влияние на активность фермента. В первую очередь это касается групп, участаующих в катализе или в связывании субстрата. [c.185]

    Соли тяжелых металлов. Соли серебра, меди, ртути, цинка используются для дезинфекции и антисептики. Так, ионы серебра и меди преципитируют белки, а ионы ртути взаимодействуют с суль-фгидрильными (8Н—) группами белков, блокируя их. [c.433]

    Белки как амфотерные ионы. Между полинептидными цепями молекул белков (или между разными точками одной и той же цепи) могут развиваться три типа связей или сил притяжения ковалентные связи 8—5 так, как указывалось выше, водородные связи (см. ниже) и электростатические силы притяжения между разноименными ионными группами. Физико-химические свойства белков, значительно отличающиеся от свойств других макромолекулярных соединений, обусловлены именно этими взаимодействиями между цепями белков. [c.433]

    Среди ионов тяжелых металлов для образования комплексов с тиольными группами белков и пептидов следует упомянуть Zn + и Си2+. Для метода, основанного на использовании хелатных гелей, содержащих эти ионы, Порат и др. [48] ввели термин ме-таллохелатная аффинная хроматография . Этот метод детально рассмотрен в разд. 7.6. [c.125]


Смотреть страницы где упоминается термин Ионные группы в белках: [c.290]    [c.475]    [c.475]    [c.308]    [c.400]    [c.74]    [c.123]    [c.234]    [c.328]    [c.66]    [c.402]   
Химия и биология белков (1953) -- [ c.42 , c.67 , c.97 , c.107 , c.108 , c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Белки k-m-e-f-группы

Кальций ионы, взаимодействие с гидроксильными группами белка



© 2024 chem21.info Реклама на сайте