Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контакты восстановления

    Аппаратура, предназначенная первоначально для осуществления межфазного контакта в таких процессах, как абсорбция, ректификация или экстракция, часто применяется и для проведения реакций. Многие гетерогенные реакции в жидкой фазе протекают в колоннах с насадкой. При получении кальцинированной соды по методу Сольвея используются колонны с особого типа колпачковыми тарелками. Электрохимические процессы, такие, как окисление, восстановление и электролиз, требуют применения специальной аппаратуры, которая здесь не рассматривается. Описание электродуговых и фотохимических процессов можно найти в специальной литературе. [c.381]


    Эта реакция включает гомогенное расщепление молекулы водорода. В реакциях гетерогенной каталитической гидрогенизации большая затрата энергии (103 ккал), необходимая для расщепления 1 моля водорода, пополняется за счет энергии, выделяющейся при образовании связей водород—металл. При установлении соответствующего контакта между основным компонентом реакции и поверхностью катализатора в принятых условиях процесса атомы водорода переходят к акцептору по механизму, пока еще мало изученному. Примеры гомогенной гидрогенизации исключительно редки. Кэлвин [3J описал подобную систему, в которой проводится восстановление водородом хинона в растворе хинолина с использованием в качестве катализатора ацетата одновалентной меди. При детальном кинетическом изучении этой реакции Велер и Миле [24] обратили внимание на поразительное сходство между активацией водорода ацетатом одновалентной меди и активацией водорода в условиях оксосинтеза. Эти исследователи выступили в поддержку механизма активации, предложенного Кэлвиным, который они записали следующим образом  [c.300]

    С помощью бензохинона изучена сорбция водорода в ряду Ni/ZnO-катализаторов, восстановленных при 250, 350 и 450°С. Найдено, что максимальная сорбция водорода наблюдается для контактов, восстановленных при 350°С, в области малых заполнений (4,8—9,1 % Ni). [c.467]

    Окисление Окисление Восстановление (углеродный контакт) Восстановление -Ь окисление [c.188]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]


    Все, без исключения, этапы пуска установки играют важную роль в процессе подготовки катализатора к реакционному циклу. Сушка катализатора - это подготовительный этап перед восстановлением. Известно, что восстановление контакта во влажной среде снижает его активность. Это обуславливается уменьшением дисперсности платины и снижением кислотной функции носителя из-за выноса хлора. Особенно чувствительны к высокой влажности циркулирующего газа катализаторы серии КР. Таким образом, график и условия сушки должны выбираться так, чтобы основная масса воды была удалена из системы при возможно более низких температурах. Этого можно добиться, производя сушку при низком давлении и максимальной циркуляции газа. Тогда основная масса воды удаляется уже при 150-200°С - до 91%. [c.66]

    Рекомендованный график подъёма температуры при сушке системы и катализатора необходимо выдерживать как при сушке перед оксихлорированием катализатора, так и перед восстановлением свежего контакта. Иной, более простой вид имеет сушка катализатора перед восстановлением во время выполнения нетрадиционного пуска (см. раздел 7). [c.67]

    Некоторые степени окисления -элементов, проявляемые ими во вполне устойчивых кристаллических веществах, неизвестны или нехарактерны для ионов в водных растворах. Это обусловлено процессами диспропорционирования (например, для соединений Мп+ ) и, ири малых восстановлением Н2О до М2 (в частности, для Сг+ ). При контакте с воздухом возможно и окисление растворенных соедииеиий кислородом. [c.492]

    Восстановление ароматических нитросоединений до аминов может сопровождаться гидрированием ароматического ядра, что особенно характерно прн катализе платиной, палладием и никелем. Поэтому для восстановления наиболее употребительна медь (при 200—300°С и 0,15—0,2 МПа). Если в исходных веществах присутствуют каталитические яды, ведут гидрирование с сульфидами никеля и молибдена при 300—350 °С и 20—30 МПа. Рекомендуются также медь-хромитные контакты. [c.514]

    В трубчатых аппаратах, применяемых для проведения сильно экзотермических процессов гидрирования (восстановление нитро-соедипений, гидрирование ароматических соединений), катализатор помещают в трубах диаметром 25—50 мм (рис. 151, а). Парогазовую смесь водорода с органическим реагентом обычно подают сверху (иногда снизу), и реакция протекает в трубах на зернах контакта. Выделяющееся тепло снимается хладоагентом, циркулирующим в межтрубном пространстве. В качестве хладоагента особенно подходит кипящий водный конденсат в этом случае можно утилизировать тепло реакции для получения водяного пара. [c.519]

    Жидкая фаза, образующаяся в печах для получения карбида кальция, является смесью карбида и окиси кальция, в которой стремятся иметь как можно меньше окиси кальция. Жидкая фаза находится в контакте, с одной стороны, с растворяющейся окисью кальция, с другой стороны, с коксом, с которым реагирует растворенная окись кальция. Если реакция восстановления не протекает достаточно быстро, процентное содержание окиси кальция в жидкой фазе будет слишком высоким. Неизвестно, какие свойства кокса облегчают протекание реакции с жидкой фазой можно назвать как благоприятные факторы неспособность углерода к графитизации и большую пористость кокса. Практически можно констатировать, что коксы, полученные из шихт с повышенным содержанием пламенных углей или, наоборот, тощих углей, ведут себя одинаково хорошо в печах для получения карбида кальция. [c.194]

    Данные ио размерам первичных кристалликов никеля в контактах (табл. 3) показывают, что наиболее высокая дисперсность наблюдается при промежуточной температуре восстановления 350°. При 400° вследствие восстановления размер кристаллов пикеля вновь несколько больше, возможно, вследствие спекания. Самые большие различия намагниченности обезгаженных и пеобезгажеиных контактов также наблюдаются для контактов, восстановленных при 350°. Это указывает на то, что поверхность, на которой происходит хемосорбция водорода, в этом случае наибольшая, т. е. размеры частиц наименьшие. Согласно Селвуду [14], адсорбированный водород, отдавая свои электроны на ii-уровень никеля, уменьшает число неспаренных электронов d-уровня, вызывая тем самым понижение намагниченности металла. Так как сорбция водорода металлом ограничивается только поверхностными атомами, на единицу веса металла она будет тем больше, чем меньше размеры его частиц. [c.162]

    Вейденбах и Фюрст [54] разработали хроматографический метод прямого определения размеров кристаллитов катализаторов из благородных металлов, таких, которые используют в реформинге бензиновых фракций нефти. Катализатор помещают в микрореактор, установленный в газовом хроматографе на месте колонки. Измерение размеров кристаллитов в этом методе основано на том, что при контакте восстановленного платинового кристаллита с кисло- [c.61]


    Эффективные контакты восстановления N0 с помощью СО или Нг при 200—300 °С получают при синтезе in situ ГМК на основе цеолитов [408, 409]. Контакты представляют собой фталоцианиновые комплексы, получаемые с использованием бисциклопентадиенильных комплексов Ni, Ru, Со и Os и ди- и тринуклеарных карбонилов металлов в качестве предшественников формируемых в матрице цеолита комплексов. Активность таких ГМК определяется природой, координационным состоянием и валентностью металла. [c.482]

    Способ работы с неподвижным катализатором в том виде, как он получил свое развитие в Германии (людвигсгафенский способ орошения ), заключается в следующем смесь олефинов подается сверху в реакционную печь, где она в условиях противотока приходит в контакт с поступающей снизу смесью окиси углерода и водорода при 200 am. и 160—180°. Катализатор состоит из нанесенного на немзу кобальта (1 — 2% Со) и получается пропиткой пемзы раствором азотнокислого кобальта с последующим восстановлением в струе водорода. [c.218]

    Медь добавляют для увеличения твердости зерна контакта и сшикения температуры восстановления и рабочей температуры синтеза, а также для того, чтобы направить синтез на получение твердых парафинов и спиртов. [c.114]

    Ход определения. Навеску сплава (1 г) растворяют в смеси 100 мл разбавленной (1 4) H2SO4 с 1 мл разбавленной (1 1) HN0.1. По окончании растворения навески к раствору прибавляют несколько миллилитров 10%-ного раствора сульфата гидразина (N2H4-H2SO4) для восстановления азотистой кислоты и окислов азота, мешающих осаждению меди на катоде. Разбавляют раствор до 150 мл, нагревают до 60—65° С и подвергают внутреннему электролизу. Для этого опускают в раствор электродную пару, состоящую из цинкового анода и платинового сетчатого катода , собранную, как показано на рис. 63. Предварительно тщательно зачищают контакты анода и катода, поверхность цинкового анода и хорошо закрепляют их в соответствующих клеммах. [c.451]

    Стандартные потенциалы используются при решении многих проблем, связанных с химическим раЕ.новесием в растворах. В условиях, когда значения электродного и стандартного потенциалов совпадают, т. е. когда второе слагаемое в уравнении (7.14) равно нулю, любой электрод, расположенный ниже в ряду стандартных электродных потенциалов, находится в более окисленном состоянии, чем электрод, расположенный выше, т. е. ближе к началу ряда. Если из двух таких электродов составить электрохимическую систему, то на первом из них будет протекать реакция восстановления, а на втором — реакция окисления. Процесс идет в том же направлении, если акт 1вные веш,ества обоих электродов находятся в непосредственном контакте друг с другом и реакция протекает по химическому пути. И в том, и другом случаях изменится состав системы и электродные потенциалы перестанут отвечать стандартным потенциалам электродов. Равновесие в системе наступит в тот момент, когда потенциалы двух электродов (или двух электродных реакций) сделаются одинаковыми. Такое состояние достигается при определенном соотношении активностей участников реакции, отвечающем константе ее равновесия. [c.182]

    Все электроды, потенциалы которых менее положительны, чем потен[ц1ал кислородного электрода, термодинамически неустойчивы в контакте с воздухом и водой. В этих случаях наблюдается самопроизвольное восстановление кислорода и превращение его в воду или в пероксид водорода с одновремепным окислением соответствующих металлов или других веществ. Так, наиример, металлическое железо ( ч +м с =—0,44 В) реагирует с кислородом воздуха  [c.185]

    Таким образом, еслн электрод расположен в ряду стандартных электродных потенциалов между ]юдородным и кислородным электродами, то при его контакте с ра твором разложение воды с выделением водорода будет термодинамически невероятно. Однако остается еще возможной реакция восстановления кислорода, поэтому такой электрод должен быть термодинамически неустойчив в присутствии В0Д1Л и воздуха. Если ке водный раствор обезгазить и воздух над ним заменить инертной атмосферой, тогда восстановление кислорода будет исключено и электрод станет термодинамически устойчивым. В этих условия к можно реализоват ) обратимый потенциал электрода и измерить его относительно соответствующего электрода с[)авиеиия. [c.186]

    При малых нагрузках (обычно при напряжениях сдвига до 50—500 Па) смазки деформируются, подчиняясь закону Гука. Повышение напряжения сдвига (т) приводит к пропорциональному увеличению обратимой линейной деформации (7) испытуемого образца смазки. Дальнейшее увеличение напряжения сдвига (увеличение деформации) приводит к отклонению от линейной зависимости т = /(-у). Одновременно деформация становится не вполне обратимой. При еше большем увеличении напряжения сдвига наиболее слабые связи между частицами загустителя начинают разрушаться. Однако нри этом происходит обратный процесс — установление и упрочнение новых связей между частицами загустителя, приходящими в соприкосновение друг с другом (напрпмер, под действием теплового движения). При малых нагрузках процессы разрушения и восстановления связей компенсируют друг друга. По мере возрастания напряжений сдвига скорость разрушения контактов в структурном каркасе увеличивается и при определенной нагрузке начинает заметно преобладать над скоростью восстановления связей. Важно также то, что при разрушении заметного числа связей нагрузка на оставшиеся связи даже при неизменном напряжении сдвига возрастает. В результате процесс снижения прочности структурного каркаса смазки приобретает са-моускоряющийся, лавинный характер — это соответствует достижению и переходу через предел прочности. Смазка начинает течь подобно вязкой, точнее аномально вязкой жидкости. [c.271]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Эта температура обычно лежит в пределах 110—140°, при этих условиях следует вносить кобальт в виде дикобальтоктакарбонила. По мере повышения рабочей температуры возрастает тенденция к восстановлению альдегидов в спирты при 185°, достаточно продолжительном времени контакта, и при наличии достаточного количества синтез-газа все альдегиды будут полностью восстановлены. Следует, конечно, помнить, что скорость рсех реакций сильно растет с ростом температуры, это относится также [c.292]

    В качестве сырья исно.чьзуются атмосферные и вакуумные остатки различных нефтей, ха])актеризую1циеся высокой коксуемостью [3,4, 3.10, З.П]. Контакт сырья и катализатора 0суп1сствлястся нри температурах, близких к процессу каталитического крекинга или выше (450-700 С) в зависимости от требуемой глубины превращения сырья, степени восстановления и закоксованности катализатора и других факторов. В реактор может подаваться флюидизирующий агент (водяной пар, азот, углеводородные газы) для созда- [c.60]

    Электрохимическая коррозия представляет собой взаимодействие металла с раствором электролита, при котором ионизация атомов металла и восстановление окислительного компонента протекают не в одном акте, а их скорости зависят от величин >1 электродного потенциала металла. При контакте металла с электролитом на границе раздела фаз протекает ряд сложны процессов. Электрохимическая коррозия — результат двух неаависимых, но связанных между собой электрическим балансом, электрохимических процессов анодного с переходом катионои металла в раствор и катодного, при котором освобождающиеся электроны связываются окислителем (рис. 23.1). Электрохимическую коррозию можно замедлить, вызывая [c.279]

    При восстановлении катализаторов риформинга их металлические компоненты переходят из окисного в металлическое состояние. Оптимальная температура восстановления отечественных платиновых и платинорениевых катализаторов находится в интервале 350-400°С. Единственных отличием является восстановление свежего катализатора АП-64. Этот контакт осер-нён при изготовлении, причём в виде сульфида платины - PtS2, которая восстанавливается при температуре не ниже 480°С. [c.67]

    Отличительной особенностью пуска установок на платинорениевых катализаторах является их способность к гидрогенолизу углеводородов. Гидрогенолиз (метанирование) протекает на металлических центрах катализатора после их восстановления уже при температуре 300°С. В результате происходит зауглероживание контакта. С учётом этого оптимальным вариантом восстановления можно считать восстановление электролитическим водородом, однако, в отечественной промышленной практике это практически нереализуемо. При восстановлении катализатора водородсодержащим газом гидрогенолизу подвергаются лёгкие парафины, это приводит к снижению концентрации водорода. Наиболее интенсивно гидрогенолиз протекает при приёме сырья. За счёт экзотермичности реакций в реакторах (особенно последней ступени) возможно неконтролируемое повышение температуры на 40-160°С и резкое - до 10-20% об. - снижение концентрации Н2 в ВСГ. Это приводит к быстрому закоксовыванию катализатора, снижению его межрегенерационного цикла и низкой селективности процесса. [c.67]

    Метод протекторов осуществляется присоединением к защищаемому металлу большого листа, изготовленного из другого, более активного металла — протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы иа o uoue магния. При хорошем контакте между металлами защищаемый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железо поляризуется катодно, а п,инк — анодно, В результате этого на железе идет процесс восстановления того окислителя, когорый присутствует в воде (обычно растпоренный кисло )од), а цинк окисляется. [c.560]

    Первоначально применяли кипящую разведенную 40% ШБО , но катализатор при ятом быстро восстанавливался до металла. Крепость кислоты была понижена до 30% и даже до 10%, а температура до 80°, причем образующийся альдегид быстро выводился из сферы реакции. Размешиванием облегчают контакт между газом и катализатором, иногда применяя также небольшое давление. Наконец замедляют восстановление катализатора, добавляя окислителя (сернокислое я елезо).  [c.418]

    В 1910 г. Сабатье и Майль исследовали каталитическое разложение метилового спирта в прпсутствии различных контактов. Они констатировали, что этот алкоголь начинает разлагаться с 200° и разлагается очень быстро ирп 280—300° в присутствип меди, полученной восстановлением пз осажденной окиси меди. Газ состоит из двух объемов водорода и 1 объема окИсп углерода. [c.454]

    Однако 1 процессе восстановления катионообменных форм цеолитов водородом происходит миграция образующихся атомов металла на вторичную пористую структуру I . последующим их агрегированием в крупные кристаллы [2]. Между том изпестно, что каталитические свойства этих контактов во многом зависят ог со( тояния ввсдепного в цеолит металла, его дисперсности и степени гомого то1 ты в цеолите. [c.331]

    Возрастает степень химического превращения. При изучении влияния сетчатой насадки на изомеризацию циклопропана (реакция первого порядка) установлено что в аппаратах диаметром до 150 мм нри наличии такой насадки превращения выше, чем в обычном псевдоожиженном слое, хотя и ниже, чем в неподвижном. Найдено также , что при восстановлении концентрата железной руды с участием сетчатой насадки повышается степень использования водорода. Слой с сетчатой насадкой приближается по своим свойствам к псевдоожиженному слою без газорых пузырей, и химическое превращение в нем должно быть выше поскольку меньше проскок газа с пузырями без контакта с твердыми частицами. [c.541]

    Восстановление карбоксильной группы с сохранением двойных связен осуществляют таким же образом, как для насыщенных кислот, — гидрируют кислоты или их эфиры с селективными контактами. Лучшим катализатором является цинк-хромитный 2пО-Сг20з. Таким путем из этилолеата получают ненасыщенный олеиловый сиирт  [c.507]

    Появляющаяся жидкая фаза стекает в нижние горизонты печи, взаимодействуя с твердыми частицами шихты. Поскольку кокс всегда задается с некоторым избытком, рассчитанным на его потерю вследствие сгорания, уноса и вследствие неполноты проходящих реакций, постепенно по мере осаждения шихты и наполнения шлака он всплывает над образовавшимся расплавом и образуется слой. Таким образом, появляется третья зона, которую можно назвать углеродистой или коксовой. Содержание в ней кокса выше, чем в шпхте. В этой зоне происходит процесс химического взаимодействия восстановителя с расплавом. Расплав, проходя эту зону, как бы фильтруется через слой кокса. Приэтом обеспечивается достаточно высокая поверхность контакта фаз и непрерывный отвод иродуктов реакции. Пройдя коксовую зону, расплав приобретает тот состав, который необходимо получить. В этой зоне протекает основной технологический процесс восстановления фосфата кальция до элементарного фосфора вследствие того, что до появления жидкой фазы, восстановление фосфатов кальция не происходит. Четвертая зона ванны является зоной расплава шлака и феррофосфора, состав которого практически стабилен. Прохождение реакции в этой зоне незначительно и может проходить только в поверхности контакта расплава н кокса. [c.122]

    Полнота восстановления фосфата кальция зависит от поверхности контакта расплава с коксом, времени контакта с восстановителем и физико-химических свойств расплава, а гранулометрия восстановителя, размеры углеродной зоны, положение электрода и другие технологические и электрические параметры оказывают решающее значение на характер зависимостп содержания Р0О5 в шлаке от М . [c.122]

    Селективное гидрирование двойной углерод-углеродной связг( с сохранением карбонильной группы легко осуществить для кетонов, функциональная группа которых менее реакцнонносиособна, чем в альдегидах. Катализаторами могут служить платина, никель, медь н другие металлические, но не оксидные контакты. Условия процесса существенно не отличаются от применяемых при гидрировании олефинов, но при выборе условий следует учитывать возм Жное побочное восстановление кетонной группы. В случае ненасыщенных альдегидов гидрирование только этиленовой связи пред тавляет собой более сложную задачу. Для этого необходимы возможно более мягкие условия и катализаторы, мало активные в отнощении гидрирования карбонильных групп. Сообщается, что с мерным катализатором при ограниченном количестве водорода даже из акролеина получается проиионовый альдегид с выходом 70% [c.503]

    Опыты по влиянию длительности обработки окисью углерода яа степень удаления никеля (см. рис. 99,6) проведены при 75 °С эбразец катализатора содержал 0,64% никеля. При различном режиме восстановления характер этой зависимости одинаковый. Основное количество никеля удаляется с поверхности катализатора в первые 1—2 ч контакта с окисью углерода. При дальнейшей обработке полученные результаты не улучшаются. Процесс постепенно замедляется, а затем полностью прекращается, на наш взгляд, из-за недостаточной степени восстановления окислов металла и из-за блокирования углеродом поверхности металла, еще активного к реакции образования карбонилов. Наличие углерода [c.245]

    Зауглероженные образцы и образцы, на которых процесс регенерации был проведен только до начала уменьшения массы (т. е. окончания индукционного периода), были подвергнуты дериватографическому исследованию [109]. На кривой ДТА зауглероженного образца отмечены два экзотермических эффекта температура начала первого 370°С, максимум соответствует 400°С максимум второго соответствует температуре 520 °С. Первый экзотермический э ект на кривых ДТА зауглероженных образцов, по-видимому, обусловлен вытеснением из контакта с хромом связанных с ним атомов углерода и окислением восстановленного хрома, т.е. процессами, происходящими в конце индукционного периода. Второй эффект отвечает горению углерода. Существенно отметить, что температура начала выгорания углерода (уменьшение массы на кривой ТГ) для зауглероженного образца несколько выше температуры начала первого экзотермического эффекта. Для частично регенерированного при 400 °С образца раздвоения экзотермического эффекта не наблюдается, и начало его смещается в область более низких температур-350°С. Уменьшение массы на кривой ТГ (выгорание углерода) начинается одновременно с началом температурного экзотермического эффекта на кривой ДТА. [c.46]


Смотреть страницы где упоминается термин Контакты восстановления: [c.519]    [c.145]    [c.34]    [c.191]    [c.249]    [c.275]    [c.452]    [c.466]    [c.192]    [c.120]    [c.86]    [c.175]   
Химия привитых поверхностных соединений (2003) -- [ c.481 ]




ПОИСК







© 2025 chem21.info Реклама на сайте