Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ковалентная связь и гибридизация

    В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донор-но-акцепторному механизму. Важно отметить, что связи Н—N. образованные по различным механизмам, никаких различий в свойствах (например, в энергии связи, дипольном моменте связей и т. д.) не имеют, т. е. независимо от механизма образования возникающие ковалентные связи равноценны. Указанное явление обусловлено тем, что в момент образования связи орбитали 2в- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали. Поскольку форма этих новых орбиталей есть нечто среднее между формами 8- и р-орбиталей, то эти новые орбитали принято называть гибридными, а процесс их возникновения — гибридизацией атомных орбиталей (б).  [c.36]


    Лекция э. Гибридизация волновых функций. Донорно-акцепторный и дативный механизм образования ковалентной связи. Образование кратких связей. Сигма-и пи-связи, их особенности. Делокализвванные пи-связи. Лекция 6. Полярная и неполярная ковалентная связь. Э(М)вктивные заряды атомов в молекулах. Ионная связь как крайний случай поляризации ковалентной связи. Свойства ионной связи. Поляризуемость ионов и их взаимное поляризующее действие. Влияние системы поляризации ионов на свойства веществ. [c.179]

    Характер и типы ковалентной связи. Гибридизация орбита-лей. Параметры молекул - длина, углы и прочность связей. Способы изображения структуры. молекул. Изомерия, конформации [c.26]

    Основные положения теории химического строения органических соединений А, - М. Бутлерова. Квантовомеханические представления в химии. Гибридизация атомных орбиталей. Природа и виды химической связи в органических молекулах. Ковалентная связь и ее особенности. Направленность в пространстве. Семиполярная связь. Типы органических реакций. Понятие механизма химических реакций. [c.169]

    Появление определенной симметрии в молекулах было уже объяснено (разд. 6.3.2) на основе метода валентных связей при образовании ковалентной связи (гибридизация). Однако как чисто электростатические, так и геометрические соотношения могут привести к определенной симметрии в координационных соединениях, если исходить из ионной модели строения молекулы. Рассмотрим, например, координационный полиэдр А +Вр, в котором центральный ион с зарядом - п окружен р однозарядными лигандами. Потенциальная энергия комплекса складывается из отдельных членов, учитывающих кулоновское взаимодействие ионных пар. Сумма отрицательных (связывающих) членов тем больше, чем меньше расстояние между ионом и лигандом. Минимальное расстояние между ионом и лигандом равно гп+г (гп —радиус центрального иона, г —радиус лиганда). Для октаэдрического комплекса с симметрией Ол [c.121]

    Таким образом кремний образует с атомами лругих элементов четыре ковалентные связи. Координационное число кремния в соединениях обычно равно 4 ( // -гибридизация), но, а отличие от углерода, может быть и 6 (ipV -гибридизация). [c.376]

    Как уже говорилось, ковалентная связь характеризуется ярко выраженной направленностью в пространстве. В этом и состоит отличие ковалентной связи от других видов связи. Направленность химической связи означает, что образование ковалентных связей атомом углерода происходит не в любых направлениях пространства, а только в определенных, составляющих друг с другом углы, величина которых зависит от валентного состояния углерода. Так, при 5рЗ-гнбрндизации угол между гибридными орбиталями составляет 109°28, при 5р2-гибридизации он равен 120°, а при 5р-гиб-ридизации — 180°. [c.21]


    Если считать, что ковалентные связи в молекуле ЫНз образованы за счет участия трех р-электронов атома азота, то валентный угол между ними должен быть равным 90°. Однако он составляет 107°3, рис. 11.13. Это означает, что связи N—Н в молекуле ЫНз образованы не за счет чистых р-орбиталей атомов водорода и азота, а за счет орбиталей, претерпевших хр -гибридизацию и подвергшихся действию сил отталкивания неподеленной пары электронов. [c.46]

    Характер и типы ковалентной связи. Гибридизация орбита-лей. Параметры молекул - длина, углы и прочность связей. Изображение структуры молекул [c.24]

    Направленность ковалентной связи. Гибридизация [c.129]

    Направленность ковалентной связи. Гибридизация атомных орбиталей. Выше ( 40) уже отмечалось, что наибольшая прочность ковалентной связи достигается при максимальном перекрывании взаимодействующих электронных облаков. Такое пере- [c.129]

    При образовании максимального числа а-связей (и отсутствии гс-связей) для всех указанных состояний азота характерна р -гибридизация атомных орбиталей, причем каждая неподелен-иая пара занимает одну гибридную орбиталь. Формирование наряду с о-свя зями л-связей обусловливает другие типы гибридизации— 5р -(эдна я-связь) или зр (две я-связи). В валентном электронном слое атома азота нет -орбиталей, поэтому атом азота ие может образовать более четырех ковалентных связей. [c.394]

    Образование гибридных зр-, зр - и р -орбиталей называется соответственно зр-, зр - и хр -гибридизацией. Направленность ковалентных связей в пространстве определяется направленностью в нем гибридных орбиталей. Следует отметить, что гибридизация (смешивание) атомных орбиталей может происходить как в отсутствие на них электронов, так и при наличии на орбитали электронной пары. [c.86]

    Образование о-комплексов. В отличие от л-комплексов 0-комплексы — это катионы, при образовании которых реагент Х+ образует ковалентную связь с одним из атомов углерода бензольного кольца за счет его двух я-электронов. При этом один из атомов углерода переходит из состояния в состояние 5р -гибридизации, в котором все четыре валентности его находятся под углами, близкими к тетраэдрическому тем самым нарушается симметрия бензольного кольца. Группа X и атом водорода при этом оказываются в плоскости, перпендикулярной плоскости кольца  [c.318]

    Соединения азота с водородом. Важнейшее водородное соединение азота — аммиак N1 3. В молекуле аммиака атом азота находится в состоянии 5р -гибридизации. При этом три гибридные орбитали перекрываются с 5-орбиталями трех атомов водорода, в результате чего образуются три ковалентные связи N—Н на четвертой гибридной орбитали атома азота находится неподеленная пара электронов. Гибридные зр -орбитали ориентированы в направлениях к вершинам тетраэдра. Поэтому валентный угол ННН в молекуле аммиака (107°) близок к тетраэдрическому (109,5°). [c.169]

    Полупроводниковые свойства кремния, германия и некоторыя других простых веществ и соединений элементов IV группы периодической системы определяются прежде всего особенностями их электронной структуры и характером связи атомов в кристаллической решетке. Они имеют тетраэдрическую кристаллическую решетку каждый атом связан с четырьмя другими атомами ковалентной связью. При образовании этой связи происходит как бы перекрывание электронных орбит атомов и зр -гибридизация связей. Все связи становятся равноценными в любом тетраэдрическом направлении. Вследствие этого электроны сравнительно прочно связаны с атомами свободных электронов, способных проводить ток, насчитывается примерно [c.94]

    Для расчета химических связей в комплексах и объяснения их свойств используют различные модели метод валентных связей теорию кристаллического поля и метод молекулярных орбиталей Метод валентных связей (ВС). Согласно этому методу (см гл. II), при образовании комплексов между комплексообразова телем и лигандами возникает ковалентная связь по донорно акцепторному механизму. Комплексообразователи имеют ва кантные орбитали, т. е. играют роль акцепторов. Как правило в образовании связей участвуют различные вакантные орбитали комплексообразователя, поэтому происходит их гибридизация (см. И.З). Лиганды имеют неподеленные пары электронов и играют роль доноров в донорно-акцепторном механизме образования ковалентной связи. Например, ион имеет электронную конфигурацию 3 " 45Чр  [c.293]

    Для ковалентной связи характерно явление гибридизации (смешения) атомных орбиталей, обусловливающее симметричное распределение электронной плотности в молекуле. Так, при комбинации атомных 5- и р-орбиталей (яр-гибридизации) возникают две гибридные орбитали, расположенные относительно друг друга под углом 180° (рис. 1.5). Смешение одной 5- и двух р-орбиталей (зр -гибридизация) приводит к образованию трех гибридных орбиталей, расположенных друг к другу под углом 120°. Взаимодействие одной [c.19]


    Новыми валентными возможностями по сравнению с неионизи-рованным германием обладает Ое в своем наиболее низком возбужденном сосгоянни 4 4р (герм энергия возбуждения 148 ккал-г-ио-гГ ). В этом состоянии германий может образовывать три ковалентные связи (гибридизация <р , связи располагаются на плоскости под углами 120") и одну ионную (заряд на атоме Н 1). [c.8]

    Природа кратных углерод-углеродных связей несколько иная. Так, в молекуле этилена при образованиадй ойной ковалентной связи С = С в каждом из атомов углерода в гибридизации участвует одна -орбиталь и только две р-орбитали (зр -гибридизация) одна из р-орбиталей каждого атома С не гибридизуется. В результате образуются три зр -гибридных электронных облака, которые участвуют в образовании трех ст-связей. Всего в молекуле этилена пять сг-связей [c.554]

    Тип связи часто устанавливали, исходя из измерений магнитной восприимчивости, позволяющих вычислить число непарных электронов в молекуле вещества. При этом полезно учитывать и пространственное строение комплексного иона. Например, магнитная восприимчивость гексафторферриата аммония соответствует 5,88 магнетона Бора, т. е. наличию пяти непарных электронов. Октаэдрическая конфигурация иона РеР могла бы быть вызвана или электростатическими причинами, или, в случае ковалентной связи, гибридизацией электронов. [c.193]

    Это объясняется тем, что в атоме углерода, когда он образуе ковалентные связи с четырьмя другими атомами, из одной 5- I трех р-орбиталей в результате р -гибридизации образуются че тыре симметрично расположенные в пространстве гибридные вр -( рбнтали, вытянутые в направлении к вершинам тетраэдра. [c.454]

    Теперь допустим, что шесть лигандов, каждый с неподеленной электронной парой, должны образовать шесть ковалентных связей с ионом кобальта, который использует для этого свои октаэдрически ориентированные ги-бридизованные орбитали. Если в гибридизации участвуют 4х-, 4р- [c.226]

    Как указывалось выше, в соединениях бериллия имеется значительная доля ковалентной связи. Это проявляется в сравнительно небольшой электропроводности нх расплавов (даже ВеРг), в гидролизе сэлей по катиону, в растворимости ряда соединений Вев органических растворителях. В кристаллах, растворах, комплексах (в том числе существующи.х в газовой фазе) атом Ве имеет координационное число 4. С лигандами он образует 4 химические связи, которые близки к ковалентным, две нз иих — донорно-акцепторные. Расположение связей тетраэдрическое, что свидетельствует о 5/5 -гибридизации валентных орбиталей атома Ве. [c.320]

    Далее, как показано выше, электрофил Х+ быстро образует л-комплекс с молекулой ароматического соединения, который может изомеризоваться в несколько более стабильный о-комплекс. В 0-комплексе электрофил связан с молекулой ковалентной связью. В результате на ароматическэм кольце возникает целый положительный заряд. При этом один из атомов углерода выключается из сопряжения и переходит из состояния гибридизации sp в состояние sp  [c.151]

    Открытие новых структурных разновидностей углерода - карбина, фуллеренов, нанотрубок и др. диктует необходимость поиска закономерностей их формирования. Нужна схема, которая позволила бы классифицировать разнообразные структурные модификации и предсказывать новые. Существующая на сегодня классификационная схема, основанная на определении степени гибридизации углеродных атомов [1,2], не может адекватно репшть эти задачи. Представляется необходимым введение раздельных классификаций - во-первых, структурных состояний углеродных аллотропов, во-вторых, состояния гибридизации отдельных углеродных атомов. Для построения первой диаграммы необходимо абстрагироваться от возможности существования не дискретных промежуточных состояний гибридизации углеродных атомов и считать, что структурных состояний только три. Тогда любая точка на такой тройной диафамме состояния даст однозначную информацию о соотнощении атомов углерода образующих ковалентные связи с двумя, тремя или четырьмя соседними атомами для соответствующей структурной модификации. Вторую диафамму состояния необходимо ввести для классификагщи состояний, в которых может находиться отдельный атом углерода. Разница между состояниями атома в различных гибридизированных состояниях заключается во взаимном пространственном расположении 4 орбиталей и их размере. Поэтому классификационная схема должна однозначно задавать эту конфигурацию, для этого необходимо определение б независимых переменных - углов между орбиталями. [c.56]

    Координационные числа комплексных частиц с электростатическим взаимодействием зависят также от размеров центрального атома комплексообразователя и лигандов. Они увеличиваются с увеличением размера центрального атома и уменьшением размера лигандов, например [AlFe] и [AII4]-, [BF4] и [AlFel . Для комплексных частиц с ковалентной связью координационное число определяется прежде всего электронной конфигурацией центрального атома-комплексообразователя, а точнее видом гибридизации его орбиталей и их взаимным расположением в пространстве. Последние определяют, как было показано в гл. 2, стереохимию молекулы, а следовательно, и координационное число. [c.267]

    В каком валентном состоянии находятся атомы углерода в этилене Кдкой вид гибридизации электронных облаков характерен для этого валентного состояния Какую ковалентную связь называют л-связью Могут ли р-электроны образовывать о-связь  [c.20]

    Изомерия скелета молекулы. Номенклатура. Ковалентная а-свяяь. Гибридизация атомных орбит. Цепные реакции. Неизменяемость радикала при реакциях. Типы разрывов ковалентной связи. Спектры (ПМР, ИК, УФ) парафинов. [c.249]

    Гибридизация сопровождается образованием структур с высокосимметричным направленным распределением электронной плотности (рис. 5.5). Она отражает такое важное свойство ковалентной связи, как ее направленность. От направленности ковалентной связи зависит строение молекул. Комбинации в атоме двух электронов в - и р-состояниях приводят к образованию двух гибридных связей 2q) под углом 180° (галогениды бериллия, цинка, кадмия, ртути) например, для молекулы 2пС12  [c.101]

    Четыре валентные орбитали азота могут находиться в состоянии 5/)-, 8р--, 5/7 -гибридизации координационное число может принимать значения 2,3,4. Не исключается, что у азота за счет промо-тнрования 25-электрона в третий слой (п=3) может образоваться пять неспаренных электр01юв и соответственно пять ковалентных связей (осуществлен синтез NOF )). Этот процесс иромотирования требует меньшей затраты энергии (1570 кДж/моль), чем образова-ш,е нона азота (IV) ( 1970 кДж/моль). [c.303]

    Особенности строения электронных оболочек атомов элементов IV группы обусловливают способность их проявлять переменную валентность (степень окисления). Но если углерод и кремний образуют главным образом соединения, где они четырехвалентны, то для германия, олова и свинца в равной мере возможны и двух- и четырехвалентное состояния, причем устойчивость двухвалентного состояния повышается от германия к свинцу. Это объясняется тем, что у меньших по объему атомов углерода и кремния (и в какой-то мере германия) легко осуществляется 5р -гибридизация, вследствие чего образуется четыре равноценные ковалентные связи. С ростом радиуса атомов склонность орбиталей к гибридизации уменьшается, а удаление неспареиных электронов с р-орбиталей олова и свинца осуществляется легче, чем спаренных электронов с 5-орбиталей. [c.184]

    Другой аллотропной формой углерода является алмаз. Его плотность (3,51 г/с№) выше, чем фвфита. В кристаллический решетке алмаза (см разд. 3.2) каждый атом образует четыре ковалентные связи с соседними атомами ( р -гибридизация, i(( - ) l54 пм). Известны кристаллы алмаза, имеюи ие кубическую и гексагональную решетки. Гексагональный алмаз встре- [c.365]

    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]

    Направленность ковалентной связи является тем главным свойством, от которого зависит строение молекул. Этот вопроа подробно рассматривается в разделе стереохимии молекул (см, с. 106). С направленностью связей тесно связан вопрос о гибридизации. [c.85]

    Для атомов элементов-неметаллов, вообще говоря, образование одинарных ковалентных связей более выгодно, чем образование кратных связей, которое подразумевает наложение связей (а и п) друг на друга и неизбежно приводит к росту электронного отталкивания, ослабляющего связь. Кроме того, как предполагают, при образовании атомом только одинарных связей (алмаз) осуществляется наиболее полное вьгравнива ше (гибридизация) 5- и / -электронных положений, также дающее энергетическую выгоду. Однако даже у легких неметаллов алмазоподобная структура реализуется в редких случаях (С, 51, В). Все возрастающее по периоду (от В к Р) число электронных пар делает более энергетически выгод.гым и поэтому более вероятным возникновение вместо бесконечных многомерных образований молекулярных структур с кратными (N2, О2) и одинарными (галогены) связями в локальных молекулах. [c.249]

    Как правило, из-за взаимного отталкивания эквивалентные орбитали располагаются как можно дальше друг от друга так, две р-орбитали образуют угол 180°. Это означает, что молекула Hg l2, например, должна быть линейной (в отличие от НдО) так и есть на самом деле. Такого вида гибридизацию называют дигональной. р-Гибридная орбиталь образует более прочную ковалентную связь по сравнению как с 5-, так и с р-орбиталью, поскольку она дальше, чем эти орбитали, вытянута в пространстве в направлении орбитали другого атома и потому обеспечивает большее перекрывание. Хотя переход б5-электрона в состояние 6р требует затраты энергии, выигрыш в энергии связи более чем компенсирует эту затрату. [c.20]


Смотреть страницы где упоминается термин Ковалентная связь и гибридизация: [c.48]    [c.305]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы И Номенклатура алканов и органических веществ Строение алканов Характер и типы ковалентной связи. Гибридизация орбиталей. Параметры молекул - длина, углы и прочность связей. Способы изображения структуры молекул Изомерия, конформации

Валентность элементов в ковалентных соединениях Гибридизация орбиталей. Направленность ковалентной связи Пространственное строение молекул

Гибридизация

Ковалентность

Направленность ковалентной связи. Гибридизация атомных электронных орбиталей

Связи ковалентные Связи

Связь ковалентная

Строение алканов Характер и типы ковалентной связи. Гибридизация орбиталей. Параметры молекул - длина, углы и прочность связей. Способы изображения структуры молекул Изомерия, конформации

Характер и типы ковалентной связи. Гибридизация орбиталей. Параметры молекул - длина, углы и прочность связей. Способы изображения структуры молекул. Изомерия, конформации Физические свойства алканов. Методы разделения



© 2025 chem21.info Реклама на сайте