Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы электропроводность

    Все перечисленные выше варианты дилатометрического определения количества газов, диспергированных в жидкостях, основаны на прямом определении изменения объема газовой эмульсии. Иногда же интересно измерить изменение газосодержания жидкостей, косвенно используя существенное отличие физических свойств жидкостей и диспергированного газа электропроводность [232, 243, 340] диэлектрические свойства [246, 341] рассеяние света [342] скорость звука [98, 343] и некоторых др. [344]. Наиболее удобны в практическом отношении и более точны гравитационные, кондуктометрические и акустические методы. [c.169]


    Наряду с системами, для которых законы Фарадея оправдываются количественно, существуют и такие, где возможны отклонения от этих законов. Так, например, расчеты по законам Фарадея окажутся ошибочными в случае электролитической ванны, состоящей из двух платиновых электродов, погруженных в растнор металлического калия в жидком аммиаке. Такой раствор, как проводник со смешанной электропроводностью, обладает заметной металлической проводимостью, и значительная доля электронов в процессе электролиза способна непосредственно переходить с электрода в раствор, не вызывая никакого химического превращения. Подобные же явления наблюдаются при прохождении тока через газы. Одиако такие системы уже не будут истинными электрохимическими системами, состоящими только из проводников первого и второго рода. В истинных электрохимических системах переход электронов с электрода в раствор и из раствора на электрод обязательно связан с химическим превращением и, следовательно, полностью подчиняется законам Фарадея. Законы Фарадея, являясь, таким образом, естественным и неизбежным результатом самой природы электрохимического превращения, должны в то же время рассматриваться как наиболее надежный критерий истинности электрохимических систем. [c.282]

    Некоторые жидкие углеводороды (нефть, мазуты и растворимые в воде жидкости) практически не накапливают электростатических зарядов, так как обладают высокой электропроводностью. Все другие нефтепродукты и сжиженные углеводородные газы обладают высоким электрическим сопротивлением и в определенных условиях накапливают значительный заряд. Особенно большое влияние на электризуемость жидких углеводородов оказывает влажность воздуха, изменение которой может резко исказить данные об оценке склонности их к электризации (табл. 8). [c.150]

    Теория Аррениуса не учитывала этого обстоятельства, и многие выводы этой теории оказались в противоречии с опытом. Аррениус предполагал, что взаимодействие ионов в растворе не влияет на их распределение и движение, которые остаются хаотическими, как и в смесях идеальных газов. Исходя из этого, он утверждал, что свойства отдельных ионов в растворе не зависят от концентрации, а некоторые свойства раствора в целом пропорциональны числу ионов (или общему числу частиц растворенного вещества). Так, электропроводность раствора по Аррениусу должна быть пропорциональна числу ионов и может служить мерой степени диссоциации. [c.394]


    Поверхностное натяжение растворов как функцию их состава измеряли методом максимального давления пузырька по известной методике. Электропроводность дисперсионной среды определяли, используя мост переменного тока погрешность, не превышала 10%. Измерение электрокинетического потенциала для границ жидкость—газ и стекло—жидкость выполняли методом микроэлектрофореза в плоскопараллельной кювете. Предварительно исследуемое стекло измельчали в шаровой мельнице с металлическими шарами в течение нескольких часов. Образующуюся дисперсную систему многократно отмывали на фильтре [c.201]

    Металлическая связь. Электронный газ, электронные зоны и электропроводность. [c.600]

    Высокие теплопроводность И электропроводность металлов заставляют предположить, что валентные электроны их атомов способны относительно свободно перемещаться внутри кристаллической структуры металла. На рис. 14-22 изображена одна из моделей строения металлов, согласно которой электроны образуют газ из отрицательных зарядов, прочно скрепляющий положительные ионы металла в единое целое. На рисунке схематически указаны положительно заряженные ионы, остающиеся после отрыва от атомов валентных электронов эти ионы содержат [c.623]

    Электропроводность металлов в твердом и в расплавленном состоянии обусловливается тем, что между их частицами осуществляется металлическая связь за счет свободно перемещающихся электронов электронного газа проводники первого рода). [c.162]

    В самом деле, когда мы рассматриваем какое-нибудь свойство газа или жидкости, у нас обычно не возникает необходимости определить, в каком направлении было или должно быть измерено это свойство. Теплопроводность или показатель преломления воды одинаковы во всех направлениях. Но в кристаллах многие свойства оказываются различными при измерении их в разных направлениях. К таким свойствам относятся, в частности, показатель преломления, теплопроводность, электропроводность, механическая прочность, скорость роста кристаллов, скорость растворения их и др. Известно, что слюда, например, легко разделяется на пластинки по плоскостям, параллельным ее основной поверхности, но разделение ее на части в направлениях, перпендикулярных или наклонных к этой поверхности, требует затраты значительно больших усилий. [c.123]

    Металлы. В металлических кристаллах частицами, составляющими решетку кристалла, служат положительные ионы, связываемые между собой электронами, образующими электронный газ. Легкая подвижность этих электронов и придает металлам все те свойства, которые являются характерными для них, т. е. общими для всех металлов свойствами, по которым мы определяем металличность данного вещества. Сюда относятся как физические свойства, например высокая электропроводность и теплопроводность, ковкость (пластичность), металлическим блеск, так и химические — основной характер низших окислов и т. п. [c.135]

    Наиболее легко представить себе это в отношении электропроводности. В металлах электрический ток передается движением электронов, образующих электронный газ. В отсутствие внешнего [c.135]

    Релаксационные явления свойственны не только высокомолекулярным веществам. Мы уже сталкивались с явлением релаксации при рассмотрении кинетических свойств газов ( 35) и электропроводности растворов электролитов ( 168). Релаксация наблюдается и во многих других системах и явлениях. Однако в низкомолекулярных системах подвижность частиц настолько велика, что релаксация заканчивается в кратчайшие промежутки времени, измеряемые тысячными или миллионными долями секунды или еще быстрее. Поэтому в тех системах с влиянием релаксации прихо дится сталкиваться только при рассмотрении процессов, происхо дящих с очень большими скоростями. Но в полимерах рассмотрен ные выше особенности внутреннего строения и затрудненность пе ремещения частиц, обусловленная различными связями между цепями, приводят к тому, что некоторые перемещения частиц про исходят чрезвычайно медленно. Это приводит к малой скорости соответствующих релаксационных явлений и существенно отражается на многих свойствах. [c.580]

    Электрический ток передается в металлах движением электронов, образующих электронный газ. При отсутствии внешнего электрического поля электроны движутся во всех направлениях, и это движение электронов проводимости носит неупорядоченный характер. Под влиянием же разности потенциалов, приложенной к металлу извне, появляется направленное движение электронов. Движение электронов и осуществляет передачу электричества. Чем слабее электроны связаны с атомами, тем больше будет электропроводность металла. [c.10]

    Молекулы многих пенообразователей несут электрический заряд и при их концентрировании на стенках пузырей образуются электростатические силы отталкивания, которые стремятся отделить друг от друга стенки смежных пузырей. Это подтверждается высокой удельной электропроводностью тонких мыльных пленок и миграцией через них жидкости под воздействием электрического тока. Пенообразователь, концентрируясь на стенках пузырьков, препятствует утечке газа из последних и повышает стойкость сте- [c.24]


    Жидкости, имеющие низкую электропроводность, могут подвергаться электризации. На границе раздела жидкой и твердой фаз образуется двойной электрический слой (рис. 13.1). При движении жидкостей двойной слой частично разрушается, и в жидкости накапливается избыточное количество ионов одного знака. Присутствие в потоке нефтепродуктов воздуха или других нерастворимых газов, наличие небольшого количества воды, особенно в мелкодисперсном состоянии, а также твердых коллоидных частиц значительно усиливают электризацию. [c.168]

    Пламя представляет собой одну из разновидностей низкотемпературной плазмы и всегда содержит некоторое количество свободных электронов и ионов, что подтверждается экспериментально по наличию у него электропроводности. На рис. 1.12 приведена схема строения пламени предварительно полученной смеси светильного газа с воздухом, а также приведены температуры отдельных его участков. Оно состоит из двух областей внутренней восстановительной и внешней окислительной. Во внутренней протекают первичные реакции термической диссоциации и сгорания компонентов смеси, происходящие при не- [c.35]

    Рукавные (тканевые) фильтры и электрофильтры позволяют достичь высокой степени очистки, в том числе от мелких частиц, но часто требуют предварительной подготовки газа — в основном охлаждения до определенной температуры. Для электрофильтров выбирают оптимальные условия работы (температуру, влажность, скорость газа, конструкцию и метод встряхивания электродов) в зависимости от электропроводности пыли, ее слипаемости, дисперсности и химического состава газа. Электрофильтры, по сравнению с другими аппаратами тонкой очистки, обладают минимальным гидравлическим сопротивлением и большими возможностями автоматизации процесса. По размерам электрофильтры близки к рукавным, требуют больших капитальных затрат, но эксплуатация их дешевле. Сухие электрофильтры работают при температуре до 400—500 °С. Они наиболее экономичны при больших объемах газа (начиная с 0,5-10 м /ч). При малой производительности использование электрофильтров приводит к неоправданному возрастанию удельных затрат. Кроме того, электрофильтры нельзя использовать при обработке взрывоопасных газовых сред. В этих случаях целесообразно устанавливать рукавные фильтры или мокрые пылеуловители. [c.238]

    Полное электросопротивление (ионное и ет ла жТ под в здей" электронное) окисной пленки с удельной станем газа электропроводностью % (Oм м ), площадью 5 (см ) и толщиной к (см), выполняющей роль как электролита, так и металлического проводника, определяется уравнением [c.61]

    Н, в, и нити-армирующие наполнители в конструкц. материалах, имеющих орг., керамич. или металлич. матрицу. Н.в. (кроме борных) используют для получения волокнистых или композиционно-волокнистых (с неорг. или орг. матрицей) высокотемпературных пористых теплоизоляц. материалов их можно длительно эксплуатировать при т-рах до 1000-1500 °С, Из кварцевьк и оксидных Н,в, изготовляют фильтры для агрессивных жидкостей и горячих газов. Электропроводные карбидкремниевые волокна и нити применяют в электротехнике. [c.213]

    Графит и углерод благодаря редкому сочетанию физико-химических свойств имеют чрезвычайно широкую область применения. Относительно высокая теплопроводность графита и углерода, низкий коэффициент линейного расширения, реакционная способность по отношению ко многим газам, электропроводность, высокая термическая стойкость позволяют широко использовать эти свойства в самых разнообразных областях техники. В настоящее время, особенно для решения задач новой техники, техники высоких цараметров, графит и углерод находят все большее применение. Это определяет большой интерес научных кругов к изучению различных свойств графита и углерода. Достаточно указать на созыв международных симпозиумов по углероду и графиту, обсуждение этих материалов на конференциях по мирному использованию атомной энергии, привлекающих большое количество организаций и исследователей различных стран. [c.5]

    Используя экспериментальные графики зависимости удельного сопротивления рп от коэффициента текущего водонасыщения кв пород при различных значениях пористости к ск, рассчитывали электропроводность минеральных зерен скелета при кв = квск- Из расчета следует, что с увеличением пористости ск эффективная электропроводность зерен скелета вместе с водой, удерживаемой ими, уменьшается за счет снижения содержания остаточной воды, приходящейся на скелет. Так, при ск = 0,37 ( в ск = 0,042) удельная электропроводность Хск = = 0,001 См/м, а при 1 пск = 0,27 ( в ск = 0,049) Хск = 0,006 См/м. Если порода нефтегазоносная, то к дисперсной фазе, кроме минеральных зерен скелета, относятся нефть и газ. Электропроводность такой дисперсной фазы, как было показано выше, равна электропроводности образца породы. [c.96]

    ЧТО ЭТИ лучи ОТКЛОНЯЮТСЯ под действием магнитного и электростатического полей. Направление отклонения указало на отрицательный заряд последних. Далее было установлено, что катодные лучи отбрасывают тень, проникают сквозь тонкие металлические листки и проявляют различные механические свойства, указывающие на их корпускулярную, а не волновую природу, причем эти корпускулы должны быть крайне малы. В настоящее время нам известно, что частицы катодных лучей представляют собой электроны, т. е. отрицательно заряженные частицы с массой ничтожно малой по сравнению с массой самого легкого атома. Для надежного доказательства сзгществования таких частиц необходимо было осуществить количественное измерение их заряда и массы. Здесь следует вспомнить, что величина элементарного заряда электричества давно уже была рассчитана. Это сделал Стони, основываясь на электрохимическом эквиваленте, найденном Фарадеем, и на грубой оценке числа Авогадро, выведенном из кинетической теории газов при этом не было, однако, ничем доказано, что этот заряд обязательно связан с какой-либо массой или что он является тем же зарядом, который несут на себе частицы катодных лучей. В последующих исследованиях, произведенных в лаборатории Томсона, газы удалось сделать электропроводными не при полющи таких электрических разрядов, какими пользовались в катодных трубках, а посредством рентгеновских лучей или лучей, испускаемых радием. Эти работы показали, что и рентгеновские и т-лучи создают газовые ионы, делая таким образом газы электропроводными, причем отрицательные ионы имеют ту же величину пе (где е — заряд, ап — число молекул в 1 см ), что и у одновалентных ионов при электролизе, а величина е/т (где т — масса) примерно в 1800 раз больще величины elm, найденной для ионов водорода. Поэтому было весьма вероятно, что данные отрицательно заряженные частицы несут тот же элементарный заряд, который был найден из опытов по электролизу, и имеют массу в 1800 раз меньшую. массы водородного атома. Получение этих данных и составило открытие электрона [39]. [c.28]

    При введении реагирующих газов электропроводность катализатора резко изменялась, устанавливалась на новом уровне и, далее, в процессе реакции оставалась постоянной. Величина этого изменения зависела от температуры и от состава катализатора. Во всех случаях соблюдался строгий парал.лелизм между изменением электропроводности и активности катализатора, которая в этих работах характеризовалась выходом продуктов реакции. [c.122]

    Как указано выше, пропитанная бумага, используемая для изоляции кабелей, содержит тяжелые малоочищенные масляные дистилляты. Такие масла перед использованием обычно тщательно дегидратируют и деаэрируют. Следует обратить внимание на возможность повреждения бумажной изоляции, по-видимому, тихими разрядами. Тихие разряды, происходящие в слабых местах изоляции, вызывают появление пузырьков газа [124—127] и смолистых полимеров, которые (особенно первые) служат признаком дальнейших, более разрушительных разрядов. Интересно заметить, что ароматические и полиароматические углеводороды сами не только не выделяют газа, но и способствуют подавлению газообразования в масляных смесях, содержащих эти углеводороды. Окисляемость описываемых масел тоже имеет практическое значение увеличиваются электропроводность, диэлектрические потери и значительно увеличивается смачиваемость водой пропорционально небольшому увеличению кислотности [128—134]. [c.567]

    Другой возможный источник опшбок обусловлен возникновениеи значительных электростатических зарядов при движении твердых частиц в трубе. В этом отношении весьма важна влажность несущего газового потока. Кроме того, чтобы уменьшить заряды статического электричества, требуется заземление, особенно в случае использования очень сухого газа и малой электропроводности твердых частиц. [c.607]

    Кристаллические решетки, образуемые металлами, назызаются металлическими. В узлах таких решеток находятся положительные ионы металлов, а валентные электроны. могут передвигаться между ними в различных направлениях. Совокупность свободных, электронов иногда называют электронным газом. Такое строение решетки обусловливает большую электропроводность, теплопроводность и высокую пластичность металлов — ири механическом деформировании ие происходит разрыва связей и разрушения кристалла, поскольку составляющие его ионы как бы плавают в облаке электронного газа. [c.145]

    Эффективным методом торможения процесса атмосферной коррозии металлов может явиться воздействие на омический фактор путем уменыпегшя электропроводности сконденсирован-иого слоя электролита па поперхиости металлической конструкции. Этого можно достигнуть снил<ением содержания в атмосфере активных газов, сплел , пыли и т. д. [c.183]

    Эксперимент организуется на основе идей качественного дифференциального термического анализа и дифференциальной сканирующей калориметрии, т. е. реактор с исследуемой реакционной массой и сравнительный реактор с инертным веществом подвергаются запрограммированному нагреву с помощью жидкостной ванны. При этом контроль за ходом реакции осуществляется либо по разности температур реакционной массы и инертного вещества (ДТА), либо но количеству-тепла, необходимому для сведения к нулю в каждый данный момент времени указанной разности температур путем электрического нагрева содержимого сравнительного реактора (ДСК). Различные экзотермические (и эндотермические) эффекты дают в итоге в зависимости от температуры ряд кривых каждая экзотермическая реакция выражается максимумом на АГ, Т- или ( , Г-диаграммах. Совместное параллельное снятие термограмм и кривых изменения электропроводности и расх бда паров и газов из реактора, с одной стороны, делает информацию более надежной, с другой стороны, позволяет обнаружить и сравнить с прочими наиболее эффективный канал информации о возникновении аварийной ситуации. Полученная информация в виде альбома термограмм [каждая из которых представляет собой зависимость [c.175]

    Сущность эксперимента заключается в следующем. Теорией теплового взрыва установлена связь между характеристиками рассматриваемого явления, с одной стороны, и кинетическими параметрами и условиями протекания процесса, с другой. Если известны условия процесса и экспериментально измерены характеристики, то по теоретическим формулам, решая обратную задачу, можно определить кинетические параметры. В нашем случае условия процесса адиабатические - езуаьтате экспери -мента мы снимаем конкретные характеристики — время индукции теплового взрыва и характер изменения температуры, т. е. исходные данные для решения указанной обратной задачи. Полученная в результате опыта информация в виде кривых температура — время несет в себе данные о периоде индукции теплового взрыва и о критической температуре. Серия экспериментов с различными исходными температурами реакционной массы дает зависимость периода индукции теплового взрыва от температуры. Информацию об изменениях концентрации реагентов в реакционной массе несут полученные кривые электропроводность — время . Важные стороны характера физико-химического превращения раскрывает записанный во времени расход смеси газов и паров из реактора. [c.177]

    В методах эмиссионной спектроскопии и атомно-абсорбцион-ной спектрофотометрни вещество переводится в состояние атомного пара , что практически реализуется в плазме различных видов. Плазма — квазииейтральный электропроводный газ, состоящий из свободных электронов, а также атомов, ионов, радикалов и молекул в основных и различных возбужденных энергетических состояниях. Кроме спектральных линий в ее спектре наблюдаются системы электронно-колебательпо-вращательных полос молекул и радикалов и сплошной фон. Плазма при давлениях, близких к атмосферному, находится в состоянии термодинамического равновесия, при котором средняя кинетическая энергия Е ее частиц (свободных атомов, ионов, электронов) примерно одинакова и определяется температурой 7  [c.10]

    Методы отбора проб для постоянного контроля за ходом реакции применимы и для анализов, необходимых для разработки газоочистительного оборудования. Основой анализа я1вляется определение плотности, теплопроводности, ИК-опектроскопия, дифференциальная абсорбция в растворителях, изменение электропроводности растворителей и специфических физических свойств, таких как парамагнитные овойсттва кислорода или радиоактивность некоторых газов от радиоактивных источникш. [c.75]

    Следы СО2 обычно поглощают щелочным раствором с последующим измерением изменившейся электропроводности. Оксид уг-лерода(П) определяют также путем промьпвания газа щел01чным раствором с последующим окислением СО на катализаторе (нагретая окись меди) и определением полученного оксида (IV). [c.81]

    Содер кание оксида серы (IV) измеряют в течение 24 ч (или за меньший период) путем пропускания газов через соответствующий растворитель (разбавленная и подкисленная перекись водорода для ЗОг) с последующим анализом раствора обычными методами. В настоящее время существуют гораздо более изящные приборы для быстрого непрерывного анализа. Они основаны на измерении электропроводности раствора подкисленной перекиси водорода (0,1 мл 30%-ной Н2О2, 1 мл 0,1 н. Н2504, 0,1 мл смачивающего агента, разбавленного до 1 л) или на определении степени окрашивания реактива Вест — Гаеке (/г-розаминформальдегид). [c.100]


Смотреть страницы где упоминается термин Газы электропроводность: [c.348]    [c.72]    [c.27]    [c.160]    [c.135]    [c.39]    [c.238]    [c.240]    [c.378]    [c.207]    [c.59]    [c.611]    [c.611]    [c.175]    [c.177]    [c.56]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте