Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические синтез-газа

    Монография посвящена новым методам производства исходного газового сырья для синтеза аммиака и спиртов — методам газификации жидких топлив (мазутов) с получением технологического синтез-газа. В книге приведена характеристика жидких топлив, подвергаемых газификации рассмотрены теоретические основы и аппаратурное оформление этого процесса освещены способы очистки получаемых газов от сажи и ее утилизации показаны специфические особенности процесса синтеза аммиака на основе газов, производимых описываемыми методами. В заключительных разделах книги даны технико-экономические оценки рассмотренных методов и перспективы их развития. [c.2]


    Процесс очистки газов от сероводорода широко используется в разных отраслях промышленности — химической, газовой, нефтехимической и других. Этот процесс применяется в газовой технике уже давно — с начала прошлого столетия — и исторически впервые получил развитие на городских заводах светильного газа. В дальнейшем очистке от сероводорода стали подвергать газы коксового производства, природные и технологические, синтез-газы и водород. [c.9]

    Себестоимость аммиака, т. е. целевая функция, зависит от количества поступающих на синтез газов, количества рециркулирующего потока, температуры Б холодном сепараторе, количества выбрасываемого газа и количества получаемого аммиака. Себестоимость можно рассчитать по сумме параметров базовой системы, состоящей из технологических переменных элемента процесса. В конечном итоге имеем  [c.335]

    Выбивание горючих газов (природного, газа пиролиза, синтез-газа, циркуляционного газа, ацетона) через фланцевые соединения трубопроводов и оборудования недалеко от печей сжигания сажевой пульпы может привести к взрывам, пожарам и травмированию людей. Технологические недоработки, использование недостаточно надежных средств противоаварийной защиты и блокирующих устройств при освоении и эксплуатации установок пиролиза метана и выделения ацетилена из пирогаза также неоднократно были причиной аварий. [c.30]

    Приведенная выше характеристика возможных путей синтеза метанола показывает, что практически единственным промышленным методом производства этого продукта в настоящее время и в ближайшие годы является синтез на основе окиси углерода и водорода (синтез-газа). Существует несколько промышленных методов производства синтез-газа на базе твердых, жидких и газообразных топлив. Каждый из них характеризуется определенными технологическими и технико-экономическими показателями, оказывающими немалое влияние на экономику производства метанола. По этой причине целесообразным является рассмотрение методов производства синтез-газа, что позволит оценить состояние и пути развития сырьевой базы метанольного производства. [c.11]

    Рассмотрение сырьевой базы и технико-экономических показателей производства метанола показывает, что для этой цели в первую очередь должен быть использован синтез-газ, получающийся в качестве побочного продукта при производстве ацетилена. Но так как ресурсы синтез-газа ограничены, то в дальнейшем для производства метанола в самых широких масштабах будет использоваться природный газ, причем в ближайшие годы основным методом конверсии метана будет, по-видимому, каталитическая конверсия с кислородом. Выбор других источников сырья и методов производства технологических газов для синтеза метанола будет целиком определяться конкретными условиями, в том числе наличием ресурсов природного газа, нефтяного сырья. [c.22]


    ЦЦК предназначены для осуществления циркуляции синтез-газа в технологическом цикле синтеза аммиака и метанола. [c.286]

    Если использовать синтез-газ с высоким содержанием водорода, можно осуществить гидрирование альдегидов и продук тами оксореакции будут спирты. Однако как по термодинамическим, так и, особенно, технологическим соображениям разделяют стадии получения альдегидов от их гидрирования в спирты. [c.329]

    В одном из крупнотоннажных агрегатов аммиака с применением высоко-и низкотемпературной конверсии оксида углерода было предусмотрено внешнее использование избыточного высокопотенциального пара, получаемого при рекуперации внутренней тепловой энергии экзотермического технологического процесса. Получение пара было предусмотрено из глубоко деминерализованной воды с добавкой к ней конденсата, образующегося при охлаждении реакционных смесей пара с синтез-газом. [c.24]

    На стадии проектирования для выбранной технологической топологии ХТС (см. рис. У-6) с помощью топологического метода анализа определим материальные и тепловые нагрузки на элементы системы при следующих условиях. Необходимо очистить V м /ч (здесь и далее объемы газа приведены к нормальным условиям) конвертированного синте.ч-газа, содержащего объемн. % двуокиси углерода. Синтез-газ поступает в абсорбер, работающий при атмосферном давлении Н/м (здесь и далее давления абсолютные), с температурой 1°С. Очищенный синтез-газ, содержащий объемн. % двуокиси углерода, должен находиться при атмосферном давлении и иметь температуру 1 °С. Давление в верху регенератора составляет Рр Н/м , температура двуокиси углерода после конденсации парогазовой смеси равна i 9° С. [c.223]

    При синтезе алгоритмов необходимо соблюдать следующие технические и технологические особенности завода по производству синтез-газ а  [c.362]

    Технологическая схема классического процесса получения метанола приведена на рнс. 8.1. Свежий синтез-газ под давлением —2 МПа поступает на водную очистку от двуокиси углерода в скруббер I. После скруббера газ дожимается до нужного давления, очищается в адсорбере 2, заполненном активным углем, от пентакарбонила железа и разделяется на два потока. Один поток подогревается в теплообменнике 3 и подается в колонну синтеза 4, другой в холодном состоянии направляется в пространство между слоями катализатора. Реакционные газы охлаждаются в холодильнике 5, при этом из них конденсируется метанол и некоторые побочные продукты (вода, диметиловый эфир, высшие спирты и др.). В сепараторе 6 конденсат отделяется от непрореагировавших газов, которые возвращаются в процесс. Конденсат, представляющий собой метанол-сырец, направля- [c.250]

    Технологическая схема получения метанола по мегоду I I приведена на рис. 8.2. Газ, получаемый риформингом лигроина, сжимается центробежным компрессором 1 до давления 5 МПа, нагревается в теплообменнике 2 отходящими газами до 250 °С и поступает в реактор синтеза 3. Синтез проводится при 250— 300 °С. Регулирование температуры в реакторе осуществляется с помощью струй холодного газа, подаваемого по всей высоте реактора через специальные распределители. Производительность одного реактора составляет около 500 т метанола в сутки. Продукты синтеза после теплообменника 2 охлаждаются в холодильнике 4. Сконденсированный метанол собирается в сепараторе 5, а непрореагировавшие газы смешиваются со свежим синтез-газом и вновь направляются в реактор синтеза. Метанол-сырец из сепаратора 5 подается на ректификационную колонну 6. В верхней части колонны 6 отгоняются легкокипящие примеси (главным образом диметиловый эфир и растворенные газы), кубовый остаток колонны подается на питание колонны 7. В качестве дистиллята колонны 7 отгоняется вода, сбоку отбирается товарный метанол. В виде кубового продукта из колонны отводится небольшое количество смеси высших спиртов. [c.251]

    Технологическая схема синтеза высших спиртов из окиси углерода и водорода приведена на рис. 8.3. Смесь СО и Нг поступает в колонну синтеза I со стационарным слоем железного катализатора. Реакция осуществляется при температуре 160—190 °С и давлении 20—24 ЛШа. Жидкие продукты синтеза отделяются в сепараторе 2 от непрореагировавщего синтез-газа и поступают на гидрирование [c.254]

    Технологическая схема синтеза а-разветвленной кислоты Сю представлена на рис. 10.5. Синтез-газ и раствор нафтената кобальта в кубовом остатке колонны 6 [c.335]

    Процесс конверсии углеводородного сырья с паром является наиболее распространенным способом специального производства технического водорода и синтез-газа. Достоинства этого способа — возможность работы без дорогостоящих окислителей (кислорода), легкость создания установок большой производительности и получение водорода достаточно высокой степени чистоты. Процесс включает три основные стадии, связанные общей технологической схемой 1) конверсию углеводородного сырья с паром 2) конверсию окиси углерода с паром 3) очистку газа от двуокиси углерода. Кроме того, в зависимости от качества исходного сырья и требований к водороду в схему могут быть включены процессы предварительной очистки сырья и удаления из водородсодержащего газа следов окиси углерода. [c.114]


    С. Н. Г а н 3, Технологические процессы и оборудование производств синтез-газа и связанного азота. Изд. ГХУ, 1960. [c.588]

    Способ позволяет вырабатывать синтез-газ с соотношением С0 Н2 =1 1, необходимым для получения указанных продуктов. Однако, технологическая схема производства довольно сложна и требует существенных капиталовложений и энергозатрат. [c.35]

    Приведенные данные позволяют также рассмотреть вопрос о целесообразности перевода действующего одновременного производства синтез-газа и водорода на новую технологическую схему. [c.40]

    Конверсию углеводородных газов проводят для получения технологических газов (синтез-газ, АВС), используемых в производстве метанола, аммиака, высших спиртов, синтетического бензина, водорода и других продуктов органического и неорганического синтеза восстановительного газа для прямого получения железа, ацетилена. Производство ацетилена методом конверсии метана (окислительный пиролиз) рассмотрено в главе XXI. Процесс конверсии газообразного топлива осуществляется в реакторах различного типа—конвертерах, а полученный методом конверсии газ называют конвертированным газом. [c.216]

    Из различных технологических схем производства синтез-газа или водорода наиболее распространенной стала каталитическая парокислородная конверсия с добавлением оксида углерода (IV), который вводится в процесс для смещения равновесия реакции (д) и повышения выхода оксида углерода (II). Для этой цели используется оксид углерода (IV), выделяющийся из раствора этаноламина в регенераторе абсорбента. [c.221]

    В табл. 9.6 и 9.7 приведены составы технологических газов парокислородной (синтез-газ) и паровоздушной (АВС) конверсии, полученных в реальных технологических процессах и определенные аналитически. Однако состав газов конверсии может быть рассчитан теоретически, если известен удельный вес (доля) каждого вида конверсии в данном технологическом процессе. [c.227]

    Создание новых технологических процессов, базирующихся на более доступном и дешевом сырье. Например, переход от дорогого ацетилена к ароматическим углеводородам, алкенам, алканам и, наконец, синтез-газу в соответствии со шкалой их ценности  [c.243]

    Вследствие большого объема производства и весьма крупных капитальных затрат в производстве метанола сейчас используют все три типа технологических процессов. На рис. 12.4 представлена технологическая схема производства метанола при низком давлении на цинк-медь-алюминиевом катализаторе из синтез-газа состава Н2 — 67%, СО — 22%, СО2 — 9% объемных, полученного конверсией метана, производительностью 400 тыс. т в год. [c.265]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Составы свежего и циркуляционного газа зависят в большой мере от метода получения синтез-газа и от параметров технологического процесса в циклё синтеза. Ниже приведены примерные составы газов при использовании в качестве сырья природного газа и давлении в цикле синтеза 320 ат  [c.8]

    Газификация твердых топлив. Получение синтез-газа можно осуществлять газификацией кускового (брикетированного), мел-.козернистого и пылевидного топлива. Известны следующие процессы газификации пылевидных топлив, осуществляемые но различным технологическим схемам газификация под давлением, одноступенчатая и многоступенчатая газификация в исевдоожи-женном слое, газификация с применением инертного твердого теплоносителя, газификация с применением золы в качестве теплоносителя, газификация с применением кислорода, газификация в пульсирующей среде и др. Однако несмотря на многочисленность разработанных вариантов и схем процессов доля использования твердых топлив в производстве синтез-газа для выработки метанола и аммиака не превышает в капиталистических странах 3% [6]. Такое положение объясняется, с одной стороны, громоздкостью технологического оформления, сложностью оборудования, высокими капитальными и текущими затратами и, с другой стороны, низким качеством получающегося синтез-газа, загрязненного серосодержащими соединениями. [c.11]

    В производстве ацетилена могут происходить периодические выбросы газовых смесей ацетилена-концентра-та, газов пиролиза или крекинга, синтез-газа. Обычно наибольшие выбросы производятся в период пуска агрегатов и при нарушениях технологического режима производственного процесса. Непосредственный отвод перечисленных газовых смесей в атмосферу не разре- иается, что обусловлено горючими и токсическими свойствами этих газов и недопустимостью проникания ацетилена в блоки разделения воздуха, которые вместе с производством ацетилена обычно входят в состав химического предприятия. В связи с этим некондиционные ацетиленсодержащие газы передаются на соответствующие факелы для полного сжигания. [c.130]

    Ганз С. Н., Технологические процессы и оборудование производств синтез-газа и связанного азота, изд. Харьков, ордена Трудового Красного Знамени гос. ун-та им. А. М. Горького, Харьков, 1960. [c.367]

    Во втором издании (1-е вышло в 1967 г.) освещены теоретические основы и технология процессов производства азотоводородной смеси и синтез—газа, синтеза аммиака. Даны примеры технологических расчетов, характеристики катализаторов, адсорбентов и абсорбентов. Рассмотрено типовое оборудование, а также принципы автоматизации технологических процессов. Особое внимание уделено описанию энерготехнологических агрегатов оптимально большой единичной мощности. [c.464]

    Если для воздушных холодильников в схеме компримирова-ния синтез-газа расчетные коэффициенты теплопередачи находятся в пределах 22—30 Bт/(м K), то для холодильников технологического воздуха они составляют 8,5—15Вт/(м2-К), т. е. более чем в два раза ниже, хотя аппараты по своей конструкции и характеру движения теплоносителей одинаковы. Уменьшение значений коэффициента теплопередачи обусловлено теплофизическими свойствами теплоносителей, скоростями движения, термическим сопротивлением пленки конденсирующейся влаги. [c.26]

    Большинство существующих процессов, использующих в качестве сырья каменные или бурые угли и позволяющих получать жидкие топлива, синтез-газ, светильный газ средней теплоты сгорания, а позднее и ЗПГ, были разработаны в ФРГ в период до и во время Второй мировой войны для того, что бы не зависеть от импорта нефтяного топлива. Не все процессы нашли применение для производства ЗПГ лишь технологические схемы, базирующиеся на методах Лурги и Копперс — Тотцека , оказались весьма перспективными [6]. [c.155]

    Синтез метилового спирта по физико-химическим условиям его проведения и по технологическому оформлению аналогичен процессу синтеза аммиака. Синтез-газ, как и азотоводородиую смесь, получают конверсией природного газа или другого углеводородного сырья. При синтезе метанола, как и при синтезе аммиака, взаимодействие смеси тщательно очищенных газов происходит при высоких давлении и температуре в присутствии катализаторов. [c.164]

    Решение. Синтез метанола из синтез-газа (смесь СО и На) по физикохимическим основам процесса и технологическому оформлению аналогичен синтезу аммиака. Как и азотоводородную смесь, синтез-газ получают конверсией генераторного или природного газа. Условия реакции синтеза -метанола, как и синтеза аммиака, требуют высокой энергии активации реакция идет с уменьшением объема, обратима, экзотермична процесс ведут при высоких давлениях и температурах в присутствии активного катализатора. Выход конечного продукта невелик не только вследствие приближения к равновесию, но и благодаря побочным реакциям. Процесс ведут непрерывно по циклической схеме. Уравнение реакции синтеза метанола СО + 2На СН3ОН. i [c.39]

    Технологическая схема синтеза масляных альдегидов приведена на рис. 8.5. Раствор нафтената кобальта в кубовом остатке и часть синтез-газа направляются в карбонилообразователь 1. Реакция образования карбонилов кобальта осуще- твляется при температуре 170—180 С и давлении 23—30 МПа. Раствор карбонилов кобальта далее поступает в блок гидроформилирования, состоящий из двух последовательно соединенных реакторов 2 и 3. Туда же подаются пропан-пропиленовая фракция, растворитель (толуол-рециркулят со стадии ректификации) и синтез-газ. [c.259]

    Технологическая схема получения спиртов С,—Сд приведена на рис. 8.6. Растворитель (углеводородная фракция со стадии ректификации) и синтез-газ поступают в кобальтизер 1, заполненный пемзой, на которой осажден металлический кобальт. Образование карбонилов кобальта и их смыв осуществляется при температуре 100—150 °С и давлении 30 МПа. Раствор карбонилов кобальта смешивается с олефиновой фракцией и поступает в реактор гидроформилирования 2. Синтез альдегидов протекает при 145—160 °С. Продукты гидроформилирования [c.260]

    Технологическая схема получения спиртов j,—С приведена на рис. 8.7. Водный раствор ацетата кобальта, растворитель (пентан-гексановая фракция) и ретурный газ поступают в карбонилообразователь I. Образование карбонилов кобальта протекает при 160—170 С и 30 МПа. Затем смесь направляется в сепаратор для расслаивания на водную и органическую фазы. При этом гидрокарбонил кобальта распределяется между обеими фазами. Для полного его перевода в органическую фазу водный слой обрабатывается 10%-ным раствором перекиси водорода. При этом гидрокарбонил кобальта быстро окисляется в o2( O)g, который хорошо растворяется в пентан-гексановой фракции. Водный слой из сепаратора 2 далее направляется на стадию декобальтизации, а органический — в реактор гидроформилирования 3. Туда же подается синтез-газ и олефины Сц— i4. Гидроформилированне высших олефинов осуществляется при 140—150 °С. [c.262]

    ДальнеЁшее согершеЕствование технологии паровой каталитической конверсии должно быть направлено на увеличение давления процесса, совершенствование методов очистки водородсодержащего газа, упрощение технологической схемы за счет сокращения количества стадий производства или их совмещения, а также создание замкнутой, безотходной технологии. Вместе с тем широкое внедрение в XI и ХП пятилетках процесса производства водорода и синтез-газа каталитической конверсией ставит новые серьезные задачи по обеспечению сооружаемых производств катализаторами, отвечающими современному техническому уровню. [c.5]

    По сравнению с промышленной схемой новый вариант включает помимо конверсии окиси углерода процесс метанирования. Преимуществом нового варианта является проведение всех процессов при одинаковом дав11ении (1,3-1,4 ЫПа). Компримирование (до давления оксосинтеза) как синтез-газа, так и водорода осуществляется на выходе из технологического комплекса. Сброс давления газов в процессе переработки исключается. Преимуществом является такхе большая возможность использования вторичных ресурсов тепла. [c.36]

    В расчетах учтены результаты предпроектной проработки ВНИПИнефти производства пропионовой кислоты и диэтилкетона на Салаватском НХК с использованием дфя получения синтез-газа и водорода технологической схемы ВНИИНП. [c.36]

    Рассмотрены принципиальные технологические схены в материальные балансы процесса одноврененного производства водорода и технологического газа для оксосинтеза нетодон каталитической паровой и пароуглекислотной конверсии углеводородного сырья. Приведены данные по зависиности соотношения выходов водорода и синтез-газа от состава сырья. Рис. 2, таблица, библ. ссылок 6, [c.158]


Смотреть страницы где упоминается термин Технологические синтез-газа: [c.271]    [c.212]    [c.189]    [c.409]    [c.360]    [c.14]    [c.258]    [c.265]    [c.269]    [c.36]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.124 ]

Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.240 , c.245 , c.246 ]




ПОИСК







© 2025 chem21.info Реклама на сайте