Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Доннана эффект

    Больщинство авторов для объяснения суспензионного эффекта привлекает теорию равновесия Доннана. Рассмотрим более подробно измерение мембранного потенциала в цепи Доннана, а также измерение суспензионного эффекта и покажем их идентичность. [c.309]

    Эффект Доннана обусловливает распределение электролитов в тканях орга--низма и является причиной возникновения биопотенциалов. Для лиофобных систем, как мы указывали в гл. Ill, эффект Доннана также имеет большое значение. Здесь роль мембраны или геля играют сами коллоидные частицы, на которых адсорбированы недиффундирующие ионы, что приводит к неравномерному распределению электролита в растворе. Особенно такое неравномерное распределение сказывается при центрифугировании золей (аоль-концентрационный эффект) или при оседании суспензии (суспензионный эффект Пальмана — Вигнера). При ультрафильтраций доннановский эффект может приводить к неравномерному распределению электролитов в ультрафильтрате и в межмицеллярной жидкости. [c.477]


    Если два раствора электролита разделены мембраной, непроницаемой хотя бы для одного из ионов (обычно это ион коллоида), то все остальные ионы распределяются по обе стороны мембраны неравномерно. Это сказывается на величине измеряемого осмотического давления коллоидного раствора, а также проявляется в обнаружении разности потенциалов между коллоидным раствором и равновесной с ней жидкостью. Данное явление было открыто в 1911 г. Доннаном и получило название мембранного равновесия или равновесия Доннана. Очень близко связаны с этим явлением так называемые суспензионный и золь-концентрационный эффекты. [c.305]

    Осмотический метод. Применение осмотического метода наталкивается на ту трудность, что белки, будучи амфотерными ионами, существуют в кислом растворе в виде катионов, а в щелочном растворе —в виде анионов. В кислом растворе присутствуют также неорганические анионы (например, С1 ), а в щелочном растворе — катионы (например, Na+). Эти ионы с небольшим молекулярным весом могут диффундировать через мембраны, не проницаемые для макроионов белка, увеличивая осмотическое давление по ту сторону мембраны, где находится белок (эффект Доннана), Вследствие этого осмотическое давление изменяется с изменением pH, так как число кислотных или основных групп белка тоже зависит от pH например, для 1,2%-ного раствора гемоглобина имеем [c.428]

    Целью работы является измерение э. д. с. цепи Доннана и золь-концентрационного эффекта (АрН), а также демонстрация их идентичности. [c.311]

    Включение различных ксенобиотиков в почвенное или осадочное органическое вещество происходит аналогично синтезу гуминовых веществ из низкомолекулярных органических соединений. Образование гуминовых веществ может катализироваться ферментами и неорганическими компонентами почвы или донных осадков. В частности, в почве возможна полимеризация замещенных фенола, гидрохинона, пирокатехина, пирогаллола и других соединений, ускоряемая (до 1,6 раз) присутствием монтмориллонита, вермикуллита, иллита и каолинита. В результате полимеризации образующиеся гуминовые макромолекулы откладываются в межслойном пространстве минералов глины. В качестве катализаторов могут выступать и оксиды Мп(П1/1У) и Ре(Ш). Полимеризация в присутствии оксидов Мп вызывает потемнение цвета фенолов, причем чем выше степень потемнения, тем выше выход гуминовых веществ. Активность оксидов Мп проявляется при типичном для почв pH 4-8. В этом процессе бирнессит (З-МпОг), по всей вероятности, из-за более высокой удельной поверхности активнее, чем пиролюзит (Р-МпОг). Бирнессит также катализирует образование азотсодержащих полимеров в гидрохинон-глициновой и пирогаллол-глициновой системах. Каталитический эффект оксидов железа в этих реакциях менее выражен, однако поскольку содержание оксидов железа в почве относительно высоко, их роль в абиотическом образовании и трансформации гуминовых веществ может быть существенной. [c.304]


    В морской воде защита стальных конструкций обеспечивается при потенциале —0,80 В (н. к. э.). При более катодных потенциалах, например —1,10 В, возникает опасность появления избыточных гидроксил-ионов и большого объема образующегося водорода. Амфотерные металлы и некоторые защитные органические покрытия разрушаются под действием щелочей. Эндосмотические эффекты и образование водорода под слоем краски могут вызывать ее отслаивание. Эти явления часто наблюдаются на участках конструкций, расположенных вблизи анода. Выделяющийся водород может разрушать сталь, особенно высокопрочную низколегированную. Углеродистые стали обычно не подвергаются водородному разрушению в условиях катодной защиты. При избыточной Катодной защите выделение водорода может приводить к катастрофическому растрескиванию высокопрочных сталей (с пределом текучести выше 1000 МПа) при наличии растягивающих напряжений (водородное растрескивание под напряжением). Одним из ядов , способствующих ускоренному проникновению водорода в металл, являются сульфиды, присутствующие в загрязненной морской воде, а также в донных отложениях, где могут обитать сульфатвосстанавливающие бактерии. [c.171]

    Степень связывания ионов белками можно определять различными методами из них наиболее широко распрострапен метод равновесного диализа. При диализе (так же как и при осмометрии) используют мешочек, стенки которого непроницаемы для молекул белка, но проницаемы для небольших ионов. Диализный мешочек с раствором белка помещают в раствор, содержащий необходимый ион. После установления равновесной концентрации диффундирующего иона по обе стороны мембраны измеряют концентрацию иона в растворе, не содержащем белка разность начальной и конечной концентраций иона в не содержащем белка растворе позволяет определить концентрацию иона в растворе белка. Если концентрации иона по обе стороны мембраны равны друг другу, то это означает, что связывания не произошло. Если связывание имело место, то концентрация иона в белковом растворе должна быть выше, чем в растворе, не содержащем белка разность концентраций может служить мерой числа ионов, связанных с одной молекулой белка. Для того чтобы исключить влияние эффекта Гиббса — Доннана, равновесный диализ проводят обычно либо в изоэлектрической точке белка, либо при высокой ионной силе. Такие методы, как ультрафильтрация, распределительный анализ, а в некоторых случаях и адсорбционная спектрофотометрия, также могут служить для определения степени связывания ионов с белками. [c.73]

    Константа диссоциации К слабых П. уменьшается при увеличении степени диссоциации а. Это вызвано тем, что с ростом а возрастает суммарный заряд полииона и для послед, диссоциации ионов необходимо совершить большую работу. Поэтому сила П. (в отличие от низкомол. электролитов, для к-рых К не зависит от а) определяется характеристич. К при а = О и производной кажущейся К по а. Этот эффект значительно снижается при возрастании ионной силы р-ра. Сильным электростатич. связыванием противоионов полиионом обусловлено уменьшение эффективного заряда цепи П., что сказывается на всех св-вах их р-ров и чем, в первую очередь, объясняется существенное отличие р-ров П. от идеальных. В р-рах, содержащих низкомол. электролиты, наблюдается эффект исключения последних из областей, занятых полиионом (т. н. донна новское распределение), что также вносит вклад в неидеальное поведение р-ров П. Электростатич. теория р-ров П. основана на Дебая — Хюккеля теории (см. Растворы электролитов). [c.469]

    Механизм воздействия при этом может быть совершенно различным, как прямым, так и опосредованным. Например, наряду с прямым губительным воздействием кислот на икру (это привело к исчезновению ценных пород рыб в водоемах с pH воды менее 6,0-5,9) и на состояние ионного равновесия в дыхательных органах рыб, токсический эффект может возникать вследствие увеличения концентрации ионов алюминия и тяжелых металлов, вымываемых из коренных пород, почв и донных отложений. Прямое воздействие кислот в первую очередь затрагивает также те гидро-бионты, которые несут раковины, поскольку уже в водах с pH <6,0 у них нарушается ассимиляция кальция. [c.220]

    Благодаря отрицательному заряду каркаса водный раствор внутри кристалла цеолита ведет себя так, будто он отделен от внешней жидкой фазы полупроницаемой мембраной. Поэтому распределение ионов между цеолитом и жидкой фазой подчиняется закономерностям теории мембранного равновесия Доннана. В результате концентрации ионов внутри цеолита значительно отличаются от их концентраций в растворе и больше зависят от соотношений конкурирующих ионов, чем от их абсолютных концентраций. Именно этой причиной, а также склонностью к гидролизу объясняется возможность удаления значительной части ионов натрия из цеолитов типа фожазита при длительном промывании дистиллированной водой [24]. Другим следствием равновесия типа доннановского является возможность захвата электролита. В этом процессе анионы из водной фазы проникают в цеолит вместе с эквивалентным количеством дополнительных катионов. Этот эффект становится заметным только в концентрированных растворах. Описанию поведения электролитов внутри неподвижных фаз в ионообменных системах посвящено много работ [44—46]. [c.370]


    В компенсационной колонке, помимо конверсии ионов элюента и образца в соответствующие кислоты, может возникать и другое явление. При конверсии анионов сильных кислот образуются сильно ионизированные частицы. Вследствие мембранного эффекта Доннана (см. [12]) эти ионы почти полностью исключаются из внутреннего объема частиц смолы и появляются на выходе колонки в объеме элюента, занимающего пространство между частицами. Однако слабоионизированные частицы, образующиеся при конверсии анионов слабых кислот, способны проникать внутрь смолы. Это приводит и к увеличению времени их удерживания, которое зависит от величин рКа и объема компенсационного слоя (гл. 9). В число частиц, склонных к распределению в твердой фазе, входят анионы большинства органических кислот [13, 14], а также нитрит [15], гипофосфит, фосфит, фосфат, цианид, карбонат, борат и фторид [16]. Удерживание анионов слабых кислот определяется также местом, где происходит конверсия анионов в соответствующую кислотную форму, что в свою очередь зависит от степени отработанности компенсационной колонки. В табл. 4.1 представлена реакция детектора на различные ионы в зависимости от времени, прошедшего после регенерации колонки. [c.70]

    При спуске водохранилищ возникает проблема, состоящая в том, что некоторые компоненты донных отложений могут химически измениться в течение фазы осушения. При повторной гидратации это приведет к уменьшению полезного эффекта. Окисление органических биогенных веществ (минерализация) может также сделать их более биологически доступными при восстановлении. Действительно, принцип спуска воды, выдерживания под парами и затопления используется обычно для повышения урожайности прудов, в которых разводят рыбу. [c.70]

    Разработаны способы ремонта, заключающиеся в усилении прочности сцепления наносимых материалов с металлической поверхностью за счет создания предварительно напряженного соединения, а также за счет силы притяжения постоянного магнита, вмонтированного на дно каверны с целью повышения длительности межремонтного цикла при эксплуатации стеклоэмалированного оборудования. Предложена и отработана технология ремонта якорных мешалок и донной части стеклоэмалированных реакторов с использованием гуммировочных материалов резин 1976 и 1976-М. Проведены производственные испытания способов ремонта дефектов в стеклоэмалевых покрытиях на ряде предприятий Башкортостана, при которых достигнута продолжительность межремонтного цикла до 5...20 месяцев. Эффективность разработок подтверждена актами внедрения. На ОАО Уфавита экономический эффект составил [c.23]

    Хотя гемоглобин при высоком давлении кислорода почти так же хорошо связывает его, как и миоглобин, при низких давлениях он связывает Ог значительно хуже миоглобина и поэтому передает его миоглобину в мышцах, как это и нужно. Более того, потребность в кислороде будет наибольшей в тканях, которые уже использовали кислород и одновременно выработали СОа. Диоксид углерода понижает pH, а это еще больше увеличивает способность гемоглобина передавать кислород миоглобину. Влияние рЙ, так называемый эффект Бора, а также прогрессивное увеличение констант связывания кислоро да в гемоглобине обусловлены специфическими взаимодействиями между субъединицами. Миоглобин ведет себя проще, поскольку оц состоит только из одной субъединицы. Очевидно, что оба эти вещества необходимы для осуществления процесса транспорта. кислорода. Оксид углерода, РРз и некоторые, другие вещества токсичны, потому что они свя-зыва-ются с атомами железа гемоглобина прочнее, чем Ог. Они действуют как дон курентные ингибиторы. [c.642]

    Величины ДОа, ДОс и ДОг отражают влияние природы органического растворителя на экстрадционное равновесие связаны с нулевыми коэффициентами активности ДОа с уа(0), а ДОс и ДОг с "Ус(О). Прямое определение ДОа и ДОс затруднительно, однако некоторые сведения об их значениях могут быть получены при изучении тепловых эффектов экстракции, что будет рассмотрено ниже. Величина Д0 характеризует силу кислотно-основного взаимодействия при образовании аммониевой соли и зависит от основности амина и природы аниона кислоты. Особенности кислотно-основного взаимодействия в аммониевых солях будут также подробно рассмотрены ниже. Природа аниона кислоты влияет и на ДОс, ДОг и ДОнх- Величина ДОнх зависит от энергии гидратации анионов кислот чем меньше энергия гидратации аниона, тем сильнее экстрагируется кислота. Наблюдаемые на практике лиофильные ряды соответствуют рядам гидратации, однако разность ДОэ двух кислот составляет лишь около 15% от разностей энергий гидратации. По-видимому, ДОн, ДОс и ДОг компенсируют различия в энергиях гидратации. [c.94]

    Расчет флюктуаций зарядов по Кирквуду и Шумакеру носит более общий характер, чем тот, который был приведен здесь, и этот расчет в принципе приложим к растворам, содержащим макроионы с зарядом, отличающимся от 2=0, как в присутствии, так и в отсутствие малых ионов. Предыдущие уравнения вытекают из него как предельный случай. Кирквуд и Шумакер показали, что отрицательный вклад флюктуаций зарядов в величину химического потенциала при 2=0 быстро уменьшается при добавлении малых ионов, и при ионной силе, равной 0,1, он будет превзойден вкладом, обусловленным эффектом исключенного объема, что приведет к положительным отклонениям от идеальности. Влияние флюктуации заряда при 2, отличающемся от нуля, будет также, по-видимому, замаскировано из-за большого положительного значения второго вириального коэффициента (табл. 10), обусловленного эффектом Доннана. [c.272]

    В течение многих лет обычно игнорировали эти трудности при изучении диффузии макромолекул, а также макроионов низкого заряда в водных растворах солей или буферных смесей, в которых концентрация соли или буферного компонента является умеренно высокой (скажем 0,1 лголб) и первоначально равномерной. Вещества для последних компонентов выбирались так, что ожидалось только слабое или вообще не ожидалось никакого взаимодействия с высокомолекулярным компонентом, так что взаимодействия, ведущие к перемещению третьего компонента, предполагались незначительными. Более того, предполагалось, что умеренно высокая концентрация соли предотвращает появление сколь-нибудь заметного градиента электростатического потенциала по аналогии с тем фактом, что это в значительной мере ослабляет эффект Доннана (см. стр. 264), а также уменьшает влияние заряда на кажущийся молекулярный вес, измеряемый при помощи седиментационного равновесия (см. стр. 310). [c.407]

    Поскольку коэффициенты вязкости и диффузии для воздуха и воды малы, то можно подумать, что их эффектами можно пренебречь совсем. Однако их важность для крупномасштабных движений уже обсуждалась, а их эффекты вблизи границ являются особенно существенными. Например, условие (4.П.11) требует непрерывности касательной компоненты скорости в атмосфере и в океане на границе раздела, тогда как невязкая модель дает большой разрыв касательной скорости. На деле это приводит к больш.ому сдвигу или градиенту скорости около границы. Толщина области большого сдвига (называемого пограничным слоем) определяется коэффгщиеитом вязкости, если сдвиг достаточно мал, как в некоторых лабораторных ситуациях. Однако в атмосфере и океане сдвиг (см. разд. 2.4) почти всегда так велик, что малые возмущения растут самопроизвольно, забирая энергию от сдвигового течения и создавая при этом турбулентный пограничный слой. Перенос импульса, тепла, влажности, соли и т. д. в таких случаях происходит путем вихревого движения, исключая очень тонкий слой около границы, в котором преобладают процессы молекулярного переноса. Природа вихревого движения (и, следовательно, значения скоростей переноса) неполностью определяется сдвигом. Конвекция, связанная с тем, что тяжелая жидкость лежит над легкой, также может создавать вихри или изменять вихри, вызванные сдвигом. На скорости переноса могут также влиять свойства поверхности или некоторым прямым воздействием, или косвенно через форму поверхности (загрязнения меняют свойства воли и скорости переноса импульса волнами). Для моделирования крупномасштабных движений атмосферы и океана детальная структура пограничного слоя не может быть учтена. Вместо этого скорости переноса через границу связываются со свойствами границы и свойствами атмосферы или океана иа некотором расстоянии от границы. В частности, такое представление эффектов турбулепт-иого сдвигового потока принимает вид, указанный в разд. 2.4. Например, касательное напряжение иа дне океана или на нижней границе атмосферы можно вычислить согласно (2.4.1). Существование этого напряжения ведет к тому, что энергия отнимается от океана или от атмосферы, так что этот эффект иногда называется донным трением . Потоки тепла и воды между океаном и атмосферой рассматриваются аналогичным способом с использованием эмпирических граничных условий типа рассмот-рсш1ых в гл. 2. [c.115]


Смотреть страницы где упоминается термин также Доннана эффект: [c.200]    [c.603]    [c.39]    [c.186]    [c.281]    [c.225]    [c.157]    [c.276]    [c.149]    [c.141]    [c.301]    [c.567]    [c.93]    [c.372]    [c.465]    [c.73]   
Биофизическая химия Т.3 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Доннана

Илы донные

Эффект Доннана



© 2025 chem21.info Реклама на сайте