Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро спектрофотометрическое

    Электрохимические кулонометры представляют собой электролизеры, в которых определяют массу продукта, образующегося в растворе или выделяющегося на электроде (электродах) со 100%-ной эффективностью. По массе образовавшегося продукта рассчитывают Q. В зависимости от природы реакции и способа определения массы выделившегося продукта электрохимические кулонометры подразделяются на гравиметрические, титрационные, газовые, спектрофотометрические и др. Среди них высокой точностью отличается серебряный кулонометр. Однако он неудобен в работе из-за рыхлости образующегося на катоде осадка частиц серебра, которые осыпаются при промывании электрода. [c.70]


    Кункель, Бакли и Горин [2] разработали спектрофотометрический метод определения меркаптанов, основанный на разложении дитизоната серебра тиоспиртами с образованием свободного ди-тизона, который имеет максимум поглощения при 615 нм. [c.343]

    Тиосемикарбазон л-диметиламинобензальдегида предложен для спектрофотометрического определения палладия ( II ) в катализаторах и сплавах на основе серебра, марганца, меди, свинца, цинка, железа, алюминия, а также в растворах электролитов для палладирования [13]. [c.13]

    ПАН предложен для экстракционно-спектрофотометрического определения серебра (I) [ 6 ]. [c.66]

    ПАР предложен для спектрофотометрического определения серебра (I). [c.66]

    МФ предложен для спектрофотометрического определения серебра (I) в полупроводниковых сплавах 1п— Ад. [c.67]

    Более быстрым спектрофотометрическим методом определения мышьяка с.ледует считать метод, основанный на выделении мышьяка в виде арсина из сернокислого раствора, поглощении арсина пиридиновым раствором диэтилдитиокарбамината серебра и фотометрировании поглотительного раствора [7991. [c.172]

    Кумалиновая кислота [145] в ш,елочной среде образует с серебром окрашенный комплекс с максимумом светопоглощения при 275 нм. Наибольшая разность в светопоглош ении комплекса и реактива наблюдается при 265 нм, что рекомендовано для спектрофотометрического определения 1—10 мкг серебра. [c.105]

    Определение серебра в золоте. Спектрофотометрический дитизоновый метод можно использовать [253, 1224] после растворения пробы в царской водке и удаления золота из этого раствора экстракцией этилацетатом. Потенциометрическое титрование раствором KJ применено [1101] для определения серебра и других примесей в золоте по следующей методике. [c.181]

    Так как результаты спектрофотометрических измерений в данных системах являются крайне неточными вследствие наложения на процесс химического взаимодействия чисто коллоидных явлений, вызывающих быструю коагуляцию системы, мы не могли применить метод спектрофотометрического измерения. Для того чтобы установить воспроизводимость явлений, содержащих сернистую сурьму, нами были проведены измерения электропроводности и измерения концентраций ионов серебра подобно тому, как это уже было описано для систем, содержащих золи сернистого мышьяка. [c.146]

    Возможно спектрофотометрическое определение серебра с применением в качестве реактива дитизоната меди по смешанной окраске дитизонатов серебра н меди [58>]. Хара [58 ] предложил фотометрический метод определения серебра с использованием спиртового раствора дитизона. — Прим. ред. [c.157]


    Титрование кислотами и основаниями можно использовать для определения малых количеств кислот и оснований, однако при концентрации ниже 0,001 М обычно требуется спектрофотометрическое или потенциометрическое определение конечной точки [238]. Некоторые ионные примеси, как галогениды или цианиды, могут быть определень титрованием ионом серебра, но необходимо следить, чтобы отсутствовали органические вещества, способные реагировать с ионом серебра [63, 64]. Аналогично концентрацию ионов серебра можно определить потенциометрическим титрованием хлоридом. [c.274]

    Наибольшее затруднение в этом методе возникает из-за того, что обычно абсорбционные спектры отдельных ионов различаются не очень сильно и поэтому концентрации их не могут быть определены количественно. Тем не менее, спектрофотометрическим методом в инфракрасной области спектра изучены комплексы серебра с цианид-ионом (рис. II. 1). [c.38]

    Данные методы предназначены для определения летучих органических хлоридов в концентрации от 10 до 100 ppm в бутан-бутеновых смесях. Амперометрическое титрование не может быть непосредственно применено в присутствии веществ, которые взаимодействуют с ионом серебра или с хлороксидными ионами в разбавленном растворе кислоты. Бромиды, сульфиды, аммиак, табачный дым и перекись водорода в количестве более 25 мкг в анализируемом растворе мешают спектрофотометрическому определению. [c.24]

    Помимо электростатических взаимодействий, дополнительная стабилизация внешнесферных комплексов может иметь место за счет образования водородных связей, переноса заряда и донорно-акцепторных взаимодействий между лигандами внутренней и внешней сфер. Такие специфические взаимодействия лигандов проявляются, например, в изменении окраски при образовании внешнесферного комплекса. Так, комплекс серебра с бромпиро-гаплоловым красным (Ь) окрашен в желтый цвет, а в присутствии фенантро-лина образуется голубой комплекс состава [А (РЬеп)2Г Ь". На основе этой реакции разработан чувствительный и селективный спектрофотометрический метод определения серебра. Для спектрофотометрического определения многих элементов (Си(П), 2п(11), С<1(11), А1(Ш), Са(Ш), 1п(Ш), 8с(111) и др.) используют ионные ассоциаты их окрашенных хелатов с по- [c.143]

    Сиггиа и Сталь [2] в качестве восстановителя применяли бор-гидрид натрия. Избыток боргидрида разрушали едким натром и азотной кислотой, а затем потонциометрически титровали образовавшийся меркаптан, используя в качестве стандартного раствора раствор нитрата серебра. Как и прежде, в этом анализе можно, по-видимому, применить один из спектрофотометрических методов, описанных в гл. 15. Если образующийся в этой реакции меркаптан можно концентрировать перегонкой, то данным методом можно определять следовые количества дисульфидов. [c.361]

    Наиболее интересными реаген-пмипо чувствительности или избирательности для спектрофотометрического определения серебра являются Родазол-ХС — ФАГ (I) и тиазанягтиои-2,4- (5-азо-З ) -5 -хлор-2 ч>кси-бензолсульфокислота - ФАГ (II). [c.63]

    Реагент тиазандитион-2,4- (5-азо-З ) -5 -хлор-2 -окси-бензолсульфокис-лота предложен для спектрофотометрического определения серебра [ 4 ]. [c.64]

    Для спектрофотометрического определения пригодно окрашенное соединение серебра с пиррогаллоловым красным [764]. Максимум светопоглош ения раствора комплекса находится при 390 нм, оптимальное значение pH для развития окраски равно 7,0—7,5. Закон Бера соблюдается для растворов с концентрацией серебра 0,85 мкг/мл. Катионы Hg, РЬ, Са, Си, А1 и Mg мешают определению, однако их влияние можно устранить добавлением комплексона III в количестве, эквивалентном их содержанию в растворе. Галогенид-ионы мешают определению. [c.105]

    Описано спектрофотометрическое определение по желтой окраске комплексного соединения серебра с толуол-3,4-дитиолом в присутствии додецилсульфоната натрия как поверхностноактивного вещества [821], по желтой окраске соединения с 1-амиди-но-2-тиомочевиной в щелочной среде [1256]. [c.106]

    Анализ тиомочевины и солей свинца на содержание серебра производится полярографическим методом после накопления на платиновом катоде [53] регистрируют волну анодного окисления осадка. Минимальная определяемая концентрация серебра составляет 5-10 моль л. Соизмеримые количества железа, ртути и меди не мешают. Для определения серебра в ZnS-фосфорах применяется [1085] спектрофотометрический га-диметиламинобензилиденрода-ниновый метод. Серебро в нитрате и в окиси тория определяют фотометрированием га-диметиламинобензилиденроданинового комплекса после предварительного отделения экстракцией раствором дитизона в I4 [444, 978]. [c.192]

    Качество воды. Определение общего мышьяка. Спектрофотометрический метод с применением диэтилдитиокарбомата серебра [c.527]

    Хром и марганец в образцах стали можно окислять соответственно до бихромата и перманганата и определять одновременно в виде этих солей 34]. Образец стали растворяют в кислоте, прибавляют фосфорную кислоту для связывания железа в комплекс и несколько капель раствора нитрата серебра в качестве окислительного катализатора. Затем вводят персульфат калия для окисления хрома и большей части марганца. Чтобы обеспечить полное окисление марганца, нагревают раствор с небольшим количеством перйодата калия. Поглощение раствора определяют спектрофотометрически прн длинах волн 440 и 545 ммк. Содержание марганца и хрома в стали затем рассчитывают по уравнениям [c.54]


    Дебаем и Шу [165] по спектрофотометрически определяемому поглощению и рассеянию света платиной, нанесенной на алюмогель, было показано, что платина находится на поверхности в мелкодисперсном состоянии, и, кроме того, значительная часть ее распределена на носителе в виде атомов. К такому же выводу приводят и результаты работы Крыловой, Шехобаловой и Кобозева [166] по тущению люминесценции алюмогеля адсорбированными на нем платиной и серебром. Интересную методику изучения физического состояния металла (никеля) на носителе применил Асселен 167], возбудивший нанесенные атомы прерывистой дугой и снимавший после этого их эмиссионный спектр в ультрафиолетовой области. Результаты указывают на гомогенное распределение никеля на новерхности катализатора. [c.123]

    Метод определения адсорбированного количества по изменению объемной концентрации, разработанный при исследовании адсорбции ионов (раздел 2, в), использовался и в случае незаряженных веществ. Так, Конуэй, Баррадас и Завидский [130, 131] изучали адсорбцию органических гетероциклических оснований на никеле, меди и серебре, применяя спектрофотометрический метод определения изменения объемной концентрации. [c.154]

    Баран, Соломенцева и др. с помощью спектрофотометрических и прямых ультрамикроскопических измерений детально изучили кинетику флокуляции модельных дисперсий (монодисперсных золей иодида серебра, полистирольного латекса и золя оксида железа) противоположно заряженными полиэлектролитами (ПМВП, сополимерами винилпиридина с бутилметакрилатом ВП БМА и КМЦ), отличающимися по Л1 и заряду макроиона [6, 128, 130, 131]. [c.139]

    Поульзен, Бьеррум и Поульзен [28] исследовали ту же систему при постоянной ионной силе в присутствии достаточного количества кислоты для подавления гидролиза. Комплексообразование контролировалось с помощью измерения концентрации свободного лиганда либо добавлением аликвотной части равновесной смеси к охлажденному льдом раствору, который содержал избыток нитрата серебра, и обратным титрованием с раствором тиоцианата, либо добавлением избытка раствора железа(П1) и спектрофотометрическим измерением концентрации получающегося комплекса FeS №+. Второй метод предпочтителен для растворов, в которых для тиоцианатных комплексов хрома п имеет большую величину. После определения концентрации свободных тиоцианат-ионов по уравнению (3-4) находили п и вычисляли константы устойчивости из функции п[а). Подобным образом были изучены инертные фторидные комплексы с помощью оптического измерения концентрации свободного лиганда [30]. [c.153]

    Выбор аналитического метода в основном зависит от величины измеряемой растворимости. Умеренно высокие значения обычно определяют гравиметрическим или объемным методом, а низкие значения — полярографическим [15], колориметрическим [15, 48] или радиометрическим [59] методами. Незаряженные формы могут быть иногда отделены от насыщенного раствора экстракцией. Так, растворимость углеводородных лигандов в водных растворах серебра(I) была определена спектрофотометрически после экстракции лиганда гексаном [2], в то время как растворимость дитизона в буферных растворах измерялась [25] добавлением избытка радиоактивного серебра, экстрагированием дитизоната серебра хлороформом и определением активности в органической фазе. [c.232]

    Кроме описанных выше, имеется еще много других фотометрических методов определения йода. а-Нафтолфлавон реагирует с йодом с образованием синего соединения, которое пригодно для спектрофотометрических определений [81]. При взаимодействии йода с гидроксиламином образуется азотистая кислота, которая затем диазотирует сульфаниловую кислоту при последующем сочетании с а-нафтиламином образуется красный краситель [23]. о-Толидин, реагируя с йодом, дает сине-зеленую окраску [55]. Йодид можно определять по реакции с диоксаном [87]. В кислом растворе йодат окисляет пирогаллол до пурпурогаллина с образованием красновато-бурой окраски [103] эта реакция очень чувствительна. Можно использовать уменьшение флуоресценции флуоресцеина, поскольку дийодпроизводное не флуоресцирует [37]. Измерение интенсивности мути от йодида серебра позволяет успешно определять малые количества йодида [95]. Йод определяли также по адсорбции йодида одновалентной ртути на хлориде двухвалентной ртути [44, 77] и по образованию йодида палладия [64]. [c.243]

    Новый спектрофотометрический метод определения фторида [44] основан на его взаимодействии с хлоранилатом тория при pH 4,5 в водном растворе, содержащем метилцеллозольв. Метилцеллозольв ускоряет взаимодействие фторида с хлоранилатом тория (образуется ТЬр2С С1204) и значительно повышает чувствительность метода. Чувствительность варьируется путем измерения оптической плотности при 540 или при 330 ммк или путем изменения концентрации метилцеллозольва в растворе. Метод был проверен на водах и катализаторах. Ионы серебра, кальция, бария, магния, натрия, калия и аммония не мешают определению. Кадмий, олово, стронций, железо, цирконий, кобальт, свинец, никель, цинк, медь и алюминий мешают, и их следует удалять. При помощи ионообменной смолы удается удалить все катионы, за исключением алюминия и циркония. Если они присутствуют, фторид выделяют дистилляцией. [c.280]

    Спектрофотометрический метод использован для определения в сточных водах меди, никеля, серебра, молибдена и урана [87]. Этим методом в пробе определяется 50 химических элементов [0-1]. 9mh hohhhiJ спектрометрический метод дает возможность определять элемент с чувствительностью 0,0001—0,010 мг/л [88]. Хроматографический метод также широко применяется для опоеделения неорганических веществ в водных растворах [54 89—92-0-5,0]. [c.17]

    Элементы, хорошо экстрагирующиеся, можно определять и по обесцвечиванию окраски органического слоя. Комацу и Ковано [531] разработали метод спектрофотометрического определения малых количеств ртути, основанный на способности этого элемента вытеснять медь из ее соединения с ДЭДТК. Поглощение диэтилдитиокарбамината меди при 440 ммк уменьшается пропорционально содержанию ртути в водной фазе комплекс ртути в видимой области спектра не поглощает и не мешает фотометрирова-нию. См. также аналогичный метод в работе [532]. Таким же сио-собом оценивали содержание серебра [533, 534]. [c.175]

    Окись марганца определяют спектрофотометрически при длине волны 525 нм в растворах, в которых марганец был окислен до перманганата при помощи персульфата аммония в присутствии фосфорной кислоты и каталитического количества ионов серебра [И]. Ранее окись марганца определялась измерением светопропускания анализируемого раствора, в котором марганец окислялся до перманганата при помощи перйодата калия. Этот метод все еще широкс применяется и рекомендуется Л. Шапиро и В. Б. Бранноком [15 по следующей прописи. [c.94]

    Значите.льно чаще используют комплексон III в качестве маскирующего агента для устранения мешающего влияния катионов при определении серебра весовым [603—610], колориметрическим [611, 612] и спектрофотометрическим [613—618] методами. В присутствии комплексона III возможно определение серебра титрованием в щелочной среде раствором цианида калия в присутствии индикаторов [619] или с помощью и-диметиламинобензилиденроданида [620]. Описано также потенциометрическое и амперометрическое определение серебра [621—623]. Комплексон III обеспечивает селективную экстракцию серебра из растворов в присутствии ряда катионов — Си , , [c.307]

    Для определения следов серебра можно использовать экстракционное титрование или спектрофотометрическое определение методами одноцветной или смешанной окраски [280, 293]. Из значений констант экстракции дитизонатов серебра и. меди следует, что серебро количественно вытесняет медь из дитизоната меди. Этот факт. можно использовать для определения серебра [655]. [c.209]


Смотреть страницы где упоминается термин Серебро спектрофотометрическое: [c.72]    [c.22]    [c.161]    [c.180]    [c.182]    [c.121]    [c.144]    [c.169]    [c.281]    [c.99]    [c.97]   
Физико-химичемкие методы анализа (1964) -- [ c.428 ]

Физико-химические методы анализа (1964) -- [ c.428 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометрические



© 2025 chem21.info Реклама на сайте