Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент спектров

    Различие между оптическими антиподами обнаруживается в их отношении к поляризованному свету при исследовании с помощью поляриметра антиподы вращают плоскость поляризации света на одинаковый угол, но в противоположных направлениях. По обычным физическим константам — точкам плавления и кипения, плотности, дипольным моментам, спектрам поглощения — оптические антиподы различать нельзя физические свойства их одинаковы. [c.73]


    XIX в. Обобщение полученных при этм результатов-и анализ применения новых методов исследования (методы дипольных моментов, спектров комбинационного рассеивания, рентгенографического анализа) позволили американскому физику-химику Ф. О. Райсу в конце 1920-х годов прийти к такому выводу Без применения физических методов органическая химия замкнулась бы в синтезе новых соединений, не имеющих какого-нибудь особого значения, или оказалась бы чисто прикладной наукой на службе у медицины или биологии [1, стр. 8]. [c.9]

    Сравните дипольные моменты, спектры инфракрасного поглощения, температуры кипения чистых жидкостей, прочность и длины связей следующих молекул (изоэлектронных в отношении валентных электронов)  [c.342]

    Выводы, сделанные Арбузовым о строении фосфористой кислоты н ее производных, в последние десятилетия подтвердились современными физико-химическими методами исследования (дипольные моменты, спектры ИК, КР, ЯМР и др.). [c.7]

    Считалось, однако, что излучение пламен слабо взаимодействует со свежей горючей смесью. Молекула кислорода вследствие своей симметрии не обладает дипольным моментом и неактивна в ИК- и видимой областях спектра. Она поглощает излучение в области длин волн 200—175 нм (область адсорбции [c.114]

    Наиболее удобными методами изучения кластеров (НгО) (л>2) являются различные варианты масс-спектроскопической техники [363]. Естественно, что чем ниже температура эксперимента, тем более крупные кластеры (с большим п) удается наблюдать. Так, удалось зарегистрировать в спектре пик, соответствующий п= [368] и /г = 36 (температура 77 К) [369]. При температуре жидкого азота были зарегистрированы положительно заряженные кластеры с л от 1 до 40 [370]. В работе [371] удалось наблюдать отрицательно заряженные кластеры, содержащие вплоть до 50 молекул воды. В этой работе была сделана попытка изучить структуру этих кластеров методом электронной дифракции. Авторы приходят к выводу, что по своей структуре эти кластеры не являются фрагментами кристаллов льда, а аморфны. Были также оценены дипольные моменты кластеров с л от 2 до 6 дипольные моменты кластеров с п = = 3- 6 близки к нулю, что, по мнению авторов, свидетельствует о циклическом характере их структуры [361]. Много экспериментальных данных о существовании и свойствах кластеров, состоящих из нескольких десятков молекул воды, приводится в работе [372]. [c.133]

    Дело в том, что свойства молекулярных систем можно разбить на два класса одноэлектронные и коллективные. Одноэлектронными называют те свойства, которые в первом приближении связаны с поведением отдельных электронов (например, потенциалы ионизации, электронные спектры). Коллективные же свойства. уже в первом приближении связаны с поведением всех электронов молекулы. Примерами коллективных свойств могут служить полная энергия молекулы, суммарная энергия ее связей, дипольный момент, равновесные межъядерные расстояния. [c.209]


    Как следует из электростатики, сила поля (вызываемое им расщепление 10 О ) тем больше, чем больше заряд (или дипольный момент) лигандов, протяженность -орбиталей и чем короче расстояние центральный нон — лиганд. Практически 10 находят кз спектров растворов по частоте Vп,ax максимума полосы поглощения  [c.122]

    Переход между двумя уровнями возможен только при изменении электрического дипольного момента системы или ее квадрупольного и т. п. момента, магнитного момента, поляризуемости, а также при возбуждении молекулы ударом электрона, атома, иона. Каждому из перечисленных процессов соответствует своя величина р. Наиболее часто в формуле (43.6) величина р — электрический дипольный момент системы. Тогда величина У " " называется дипольным моментом перехода. В дальнейшем, где специально не оговаривается, речь будет идти именно о спектрах, связанных с электрическим дп-польным моментом перехода (спектры поглощения и испускания). Если дипольный момент перехода равен нулю, электрическое дипольное излучение или поглощение невозможно, соответствующий переход запрещен. Из (43.6) следуют так называемые правила отбора, позволяющие предсказывать невозможность тех или иных переходов. [c.144]

    Спектр поглощения. Симметричная двухатомная молекула не имеет дипольного момента, и при вращении он не возникает (р — 0). Отсюда дипольный момент перехода Р т ч = 0. Вот почему гомонуклеарные молекулы На, Оа, СЬ и т. п. не имеют вращательных спектров поглощения и испускания (неактивны в ИК- и МВ-спек-трах). У полярных двухатомных молекул (HF, КС1 и др.) вектор дипольного момента изменяет свое направление при вращении, т. е. р ФО, а дипольный момент перехода может быть отличен от нуля. Подстановка в (43.6) показывает, что это возможно только при условии [c.153]

    В отсутствие поля каждый вращательный уровень вырожден 2У -f 1 раз. Во внешнем однородном электрическом поле вырождение частично снимается и вращательный уровень расщепляется на 7 + 1 подуровней (эффект Штарка). В результате число линий в спектре резко увеличивается. Смещение частот новых линий относительно частоты вращательного перехода в отсутствие поля для линейной молекулы Дч =ц Я/2йД. Как видно, величина смещения пропорциональна квадрату напряженности поля F. Измерив штарковское смещение Д v, можно рассчитать дипольный момент молекулы. [c.155]

    Гомонуклеарные молекулы Hj, Oj, lj и т. п. не имеют дипольного момента, и при колебаниях он не появляется. Поэтому = О и эти молекулы неактивны в спектрах поглощения и испускания. Гетеронуклеарные молекулы типа НС1, НВг, КС1 и т. д., напротив, активны в этих спектрах, так как их дипольные моменты изменяются при колебаниях, и тем сильнее, чем более они полярны. Из вида волновых функций 1 5 ол следует правило отбора для гармонического осциллятора переходы с поглощением или испусканием света возможны только между соседними уровнями  [c.159]

    Колебательный спектр комбинационного рассеяния. Спектр КР связан не с дипольным моментом, а с поляризуемостью молекулы, и так как поляризуемость двухатомной молекулы изменяется при колебаниях (da/dr Ф 0), все двухатомные молекулы, гомонуклеарные и гетеронуклеарные, активны в колебательных КР-спектрах, причем интенсивность спектров неполярных молекул выше, чем полярных. [c.165]

    Для многих молекул о симметрии равновесной конфигурации (но не о расстояниях) удается судить уже по самому существованию или отсутствию спектра. Так, ИК-вращательный спектр аммиака указывает на пирамидальное строение молекулы, поскольку плоская молекула ХУз не имеет дипольного момента и неактивна в ИК-спектре. Аналогично существование вращательного ИК-спектра молекулы НгО указывает на нелинейность молекулы, так как линейные симметричные молекулы неполярны. Так как ИК- и МВ-вращательные спектры связаны с наличием дипольного момента, то, изучая эффект Штарка в МВС, можно определить дипольный момент люлекулы. [c.170]

    В инфракрасном спектре активны те нормальные колебания, при которых изменяется дипольный момент молекулы и так, что его производная по координате в положении равновесия отлична от нуля  [c.172]

    Как способ отождествления различных изомеров колебательная спектроскопия очень широко применяется в органической химии. Она позволяет установить для данного вещества существование не только мономеров, но и отдельных конформеров. Так как время жизни данного конформера (Ш с) в сотни и тысячи раз больше периода колебаний (10 —10 с), он успевает проявить себя в колебательном спектре. Измерение зависимости интенсивности полос двух конформеров от температуры позволяет определить теплоту превращения одного из них в другой, т. е. относительную их устойчивость. Однако далеко не всегда одни только колебательные спектры достаточны для однозначного определения равновесной конфигурации молекулы. Обычно должна использоваться совокупность данных нескольких взаимозаменяющих методов исследования, например вращательной и колебательной спектроскопии, электронографии, измерения дипольных моментов и др. [c.176]


    Поглощение в ультрафиолетовой и инфракрасной областях. Изменения в колебательной энергии молекул сопровождаются излучением, возникающем в инфракрасной части спектра. Колебатель- ) ные переходы сопровождаются изменениями вращательной энергии, которые дают серию близко расположенных линий. Получаемая при этом колебательно-вращательная полоса излучений расположена обычно В области длин волн 1—23 мкм. В инфракрасной области только этот вид колебаний связан с изменениями дипольного момента. [c.51]

    В отличие от ИК-спектров, в которых проявляются колебания, связанные с изменением дипольных моментов молекул, в спектрах КР активны те колебания, которые сопровождаются изменением поляризуемости молекулы в поле электромагнитного светового излучения. Это приводит к тому, что оба метода дополняют друг друга в определении частот колебаний в молекулах. Из спектров. КР газообразных веществ можно получить также информацию относительно вращательного движения молекул. Комбинационное рассеяние света, так же как и ИК-спектроскопия, является эффективным методом исследования строения молекул и их взаимодействия с окружающей средой. Спектры КР специфичны для каждого соединения и могут служить как для его идентификации, так и для обнаружения в смеси с другими веществами. [c.222]

    Одним из кардинальных вопросов теории экстракции является априорное предсказание экстракционной способности экстрагента на основании его физико-химических свойств. Большинство исследователей считает, что экстракционная способность для неэлектролитов должна быть связана с параметрами растворимости, для электролитов — с фундаментальными свойствами экстрагентов, например спектральными характеристиками (ИК-спектры), электроотрицательностью и реакционной способностью отдельных групп, входящих в состав молекулы экстрагента, дипольными моментами, зарядом и размером ионов, диэлектрической проницаемостью сред и т. д. [59-62]. [c.16]

    Однако л-комплексы, образующиеся из бесцветных компонентов, часто окрашены и имеют собственные полосы поглощения в видимой или УФ-частях спектра. л-Комплексы, образованные из молекул с небольшим дипольным моментом, часто бывают полярны. [c.317]

    Движение больплой амплитуды отражается на различных свойствах молекулы — ее дипольном моменте, спектре и т. п. и на термодинамических свойствах вещества. Поэтому в 80-е годы нежесткие молекулы интенсивно изучают экспериментальными и теоретическими методами [32]. В СССР в этом направлений работают Н. Г. Рамбиди с сотр., О. П. Чаркин с сотр. и др. [c.179]

    Разности энергий между конформационными изомерами 1,2-дигалоген-этанов, полученные обсуждавшимися методами (термодинамические свойства, дипольные моменты, спектры инфракрасные и комбинационного рассеяния), следующие [6] дихлорид, газ — 1,0—1,3 ккал/моль, жидкость — 0,0 ккал/моль дибромид, газ — 1,4—1,8 ккал/моль, жидкость — 0,73—0,76 ккал/моль. Интересно, что популяция скошенной конформации больше в жидком, чем в газообразном состоянии. Аналогично было найдено, что доля скошенной формы выше в полярных, чем в неполярных растворителях. Причина этого в том, что скошенная форма имеет значительный дипольный момент, тогда как трансоидная форма почти не имеет его. Известно, что сольватация (либо молекулами полярного растворителя, либо в чистой жидкой фазе другими молекулами дигалогенэтана) понижает потенциальную энергию диполя и потому стабилизирует скошенную форму по сравнению с трансоидной. К расчету величины этой стабилизации можно подойти путем, использованным в работе [12]. [c.133]

    Физико-химические свойства некоторых хлоропиридинов (физические константы, дипольные моменты, спектры ИК- и УФ-, ЯМР и ЯКР) представлены в работах [79—94]. [c.158]

    Двухатомные неполярные молекулы типа Нг, О2 и другие не имеют ИК- и МВ-спектров поглощения и испускания, так как их диполь-ные моменты равны нулю. Спектры полярных молекул связаны с изменением дипольного момента. В самом деле, если величина р = onst, ее можно вынести за знак интеграла в (43.6), и в силу [c.144]

    Уравнения (4.66) — (4.68) для энергии взаимодействия справедливы и в классической и в квантовой механике. Различие состоит лишь в расчете моментов (г и 0, причем эти моменты могут быть вычислены только квантовомеханическими методами, тогда как с помощью классической механики этого сделать нельзя. Другими словами, плотность заряда р должна быть найдена с помощью квантовомеханических расчетов. Практически такие расчеты трудно выполнить с желаемой точностью, поэтому предпочтение отдается экспериментальному определению моментов. Дипольный момент можно определить по диэлектрическим свойствам или, например, по эффекту Штарка в микроволновом спектре. Молекулярным дипольным моментам посвящена обширная литература компактный обзор по этому вопросу приведен в работе Уэтерли и Уильямса [57]. Определить экспериментально квадрупольный момент гораздо сложнее. Для этого используются такие обусловленные давлением эффекты, как уширение микроволнового спектра и поглощение в инфракрасной части спектра. Обзор всех этих методов приводится в работе Букингема [55]. Около половины известных в настоящее время [c.196]

    Экспериментально обнаружено, что одноатомные газы, такие, как Не, Ne, Аг, поглощают излучение с длинами волн существенно короче 1 мкм в линиях, аналогичных наблюдаемым в солнечном спектре. Большая часть сказанного относится и к симметричным двухатомным молекулам типа N2 и 0.2, за исключением области очень высоких давлений, когда вследствие молекулярных соударений возникает наведенный дипольный момент. Асимметричные двухатомЕ1ые молекулы типа СО, N0 и многоатомные молекулы типа СО ,, Н. О сильно поглощают в определенных интервалах волновых чисел (или длин волн), которые называются полосами поглощения (рис. 4). Из рисунка видно, что Oj имеет полосы 15 4,3 и 2,7 мкм. Как следует из рис. 4, полосы 9,4 и 10,4 мкм в окрестности 1000 см" (напомним,, что v, см )—IOVX (мкм) сильно поглощают при температурах существенно выше 300 К, однако при 300 К поглощение отсутствует. Такие полосы называют горячими. При высоких давлениях (Р>0,5 МПа) в СО появляется индуцируемая давлением полоса 7,5 мкм. [c.486]

    Решение (4.3) и (4.4) дает характеризующую состояние молекулярных электронов, и энергию электрона в этом состоянии. Значение г]),- позволяет согласно квантовой механике определять различные свойства молекулярных электронов и, следовательно, свойства молекул (например, пел, ризуемость, дипольные моменты, потенциалы ионизации, спектры и др.). Располагая в порядке их возрастания (бх < ё2 <С <. ..) и размещая на нижних энергетических уровнях молекулярные электроны (согласно принципу Паули на каждом уровне может находиться т] = 2,1 или О электронов), легко найти полную электронную энергию системы [c.53]

    Газы, молекулы которых несимметричны и имеют поэтому дипольный момент, излучают лучи инфракрасной части спектра. Taafii с симметричными молекулами (О2, N2, Нг) теплоты излучать не будут. [c.301]

    Условия, при которых дипольный момент у молекул предельных углеводородов должен отсутствовать, исключительно жесткие, В общем случае необходимо, чтобы 1) все валентные углы были тетраэдрическими 2) ни одна из С-С ч вязей не обладала дипольным моментом З) дипольные моменты всех С-Н-свяйей независимо он их положения в молекуле были одинаковы. В действительности ни одно из этих условий не выполняется. Известно, что валентные углы в алканах могут отклоняться от тетраэдрических на +3° /91/. Еще более существенна неэквивалентность С-Н, а также С-С-связей в молекулах алканов. Это говорит о том, что молекулы алканов должны иметь постоянный дипольный момшт. Однако экспериментальное определение методом Штарка дипольных моментов высших алканов до сегодняшнего дня не представляется возможным ввиду сложности расшифровки спектров. [c.142]

    Дисперсионное взаимодействие характерно для двух неполярных молекул. Хотя у обеих таких молекул дипольный момент равен нулю вследствие пульсирующего движения электронного облака (или движения электронов внутри молекулы), в одной из молекул на мгновение возникает незначительный дипольный момент, который индуцирующе действует на соседнюю молекулу и т. д. Между этими молекулами возникает дисперсионное взаимодействие, энергия Ец которого тем больше, чем выше частота дисперсионного спектра колебаний молекул vo, их поляризуемость и чем меньше расстояние между ними. Величину определяют по формуле [c.9]

    В иоследнес время для определения дипольных моментов используется изучение Штарк-эффекта в чистом вращательном спектре путем применения микроволновой сиектросконии. Таким способом мон но определить величину дипольного момента весьма точно см. статьи Горди [103] и Уиф-фена [270], а также кннгу Горди с сотрудниками [7]. [c.413]

    Rogers М. Т. Дипольные моменты и ультрафиолетовые спектры поглощения некоторых производных циклопропана и окиси этилена. J. Ат. hem. So ., 1947, 69, № 10, 2544—2548. [c.445]

    Из физико-химических (инструментальных) йй-бдов исследования, применяемых для установления молекулярной структуры органических веществ, наиболее часто используются оптическая спектроскопия (в ультрафиолетовой, видимой и инфракрасных областях спектра), спектроскопия ядерного магнитного резонанса (ЯМР), хроматография, метод дипольных моментов молекул, рентгеноструктурный анализ, молекулярная масс-спектроскопия и др. С помощью этих методов получают ценную информацию о взаимном расположении атомов в молекуле, их взаимовлиянии, внутримолекулярных расстояниях, поляризуемости связей, валентных углах и распределении электронной плотности и т. д. [c.123]


Смотреть страницы где упоминается термин Дипольный момент спектров: [c.334]    [c.209]    [c.304]    [c.209]    [c.306]    [c.50]    [c.147]    [c.154]    [c.155]    [c.162]    [c.172]    [c.79]    [c.50]    [c.487]    [c.213]    [c.71]    [c.441]    [c.489]   
Физические методы в неорганической химии (1967) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент



© 2025 chem21.info Реклама на сайте