Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент связь с молекулярной

    Оптические методы нашли широкое применение в решении задач химического строения и физических свойств молекул различных классов. Важно отметить, что для определения главных значений тензора электронной поляризуемости используются данные нескольких методов, например данные по молекулярной рефракции, степени деполяризации релеевского рассеяния, двулучепреломления (электрического эффекта Керра) и электрических дипольных моментов. Такая интеграция методов требует более строгого подхода в интерпретации определяемых физических величин. Особенно этот вопрос остро стоит в связи с использованием теории взаимодействия излучения с изолированными молекулами. Учет влияния молекул жидкой среды требует дальнейшей разработки теории. [c.262]


    При переходе электронов с ВЗМО на НСМО в возбужденной молекуле появляются две частично заполненные молекулярные орбитали, что приводит к снятию запрета реакции по правилу соответствия атомных орбиталей (см. 214). Изменение распределения электронной плотности в молекуле может сопровождаться изменением геометрической структуры молекул (ср. рис. 199 с рис. 45). Оно может привести к изменению прочности отдельных связей, поляризации и дипольных моментов молекул. Так, например, константы диссоциации /г-крезола и 1-нафтола в исходном (5 о) и возбужденном состояниях характеризуются следующими данными  [c.614]

    У линейных молекул (СО2, Sa) дипольные моменты связей компенсируются и общий дипольный момент равен нулю. Отличие от нуля дипольного момента HjS (0,93D), SOj (1,6Ш), NH3 (1,46D), РНз (0,55D) находится в соответствии с представлением о геометрической форме этих молекул, возникшим из молекулярных спектров и рентгеновского и электронного анализов. Первые две молекулы имеют треугольную форму, а NH3, РНд, АзНз — форму треугольной пирамиды. [c.536]

    Изменение дипольного момента связи происходит или благодаря действию внутреннего молекулярного электрического поля или вследствие ассоциации с другим диполем. Эффект проявляется в виде сдвига электронов двойной связи, который Ведет к увеличению или уменьшению первоначального дипольного момента. В отношении влияний, деформирующих электростатическое поле внутри молекулы, различают 1) действие свободных электрических зарядов и 2) действие электрических полей, одного на другое. [c.561]

    Такое выражение функции гр основано на предположении, что молекулярная орбиталь электрона вблизи атомов должна быть подобна соответствующей атомной орбитали. Существует математический прием нахождения коэффициентов без определения вида самих функций Ф/ или г . Делая ряд допущений, вводят постоянные ( кулоновский и резонансный интегралы) и предлагают способы их численной оценки, ориентируясь на экспериментальные данные (о длинах связей, дипольных моментах связей, силовых постоянных и т. д.). В свою очередь сумма квадратов коэффициентов С для -того атома [c.75]

    Чтобы исключить стихийный способ подбора разбавителей, в литературе неоднократно предпринимались попытки связать величину коэффициента распределения с такими параметрами разбавителей, как диэлектрическая проницаемость ( ), дипольный момент ( х), молекулярная поляризация, параметр растворимости и др., и на основе полученной функциональной зависимости эмпирически сформулировать правило выбора разбавителя. Закономерности, обнаруженные при этом, носят частный характер они справедливы лишь для данного экстрагента при небольшом изменении свойств разбавителей. [c.45]


    Если образец поливинилиденфторида (например, в виде пленки) вытянуть, его кристаллическая структура переходит в Р-форму, молекулярная конформация которой представляет собой плоский зигзаг, а дипольные моменты связей С—Р ориентированы перпендикулярно оси цепи. [c.156]

    Водородные связи. Соединения, содержащие кислород-водородные или азот-водородные связи, обнаруживают признаки ассоциации, которая, если судить по молекулярному весу, дипольным моментам и молекулярной поляризуемости этих соединений, превышает все ожидания. К примеру, вода, у которой атомы не обладают высокой поляризуемостью, плавится при 0° и кипит при 100°, между тем как диметиловый эфир, метиловый спирт и ацетон-соединения с более высоким молекулярным весом — кипят при —24, 65 и 57° соответственно и плавятся при очень низких температурах. Нет большой разницы и в дипольных моментах этих веществ. Следовательно, исключительно высокая степень ассоциации воды должна объясняться каким-то коротко дистанционным взаимодействием, которое находит свое отражение не во всех макроскопических свойствах молекул воды. Из сопоставления физических свойств воды, метилового спирта и диметилового эфира следует, что гидроксильная группа имеет резко выраженное специфическое влияние на физические свойства. [c.161]

    При пропускании инфракрасных лучей через тонкий образец полимера спектр выходящих лучей обнаруживает ясно выраженные полосы поглощения в области между 4000 и 500 (длина волны 2,5 —2 10 см), обусловленные определенным видом колебаний специфических групп атомов. Если все молекулы в образце параллельны друг другу и используется поляризованное инфракрасное излучение, то суммарное поглощение для некоторых полос меняется с изменением направления поляризации. Этот эффект особенно заметен для полос, которые обусловлены обычным видом колебаний, например валентными колебаниями группы С=0 или группы N—Н в полиамидах, так как для них изменение дипольного момента связано с колебаниями в направлении, почти перпендикулярном оси молекулярных цепей таким образом, для вытянутой или вальцованной пленки из найлона 66 полосы 3308 и 6523 см , связанные с деформационным колебанием N—Н-связей, показывают слабое поглощение для направления поляризации вдоль оси молекул и сильное поглощение для направления поляризации, перпендикулярного оси молекул [4]. Это показано на рис, 54. Явление изменения поглощения с изменением направления поляризации называется дихроизмом. [c.250]

    Многоатомные молекулы могут быть полярными или неполярными. Удобно приписывать каждой связи в молекуле свой дипольный момент суммированием этих индивидуальных диполей связей можно получить результирующий молекулярный диполь, однако диполи связей могут взаимно компенсироваться и тогда результирующий дипольный момент моле- [c.595]

    Дело в том, что свойства молекулярных систем можно разбить на два класса одноэлектронные и коллективные. Одноэлектронными называют те свойства, которые в первом приближении связаны с поведением отдельных электронов (например, потенциалы ионизации, электронные спектры). Коллективные же свойства. уже в первом приближении связаны с поведением всех электронов молекулы. Примерами коллективных свойств могут служить полная энергия молекулы, суммарная энергия ее связей, дипольный момент, равновесные межъядерные расстояния. [c.209]

    Образующаяся молекулярная орбита является симметричной лишь в случае связывания одинаковых атомов, находящихся в одинаковом окружении. Так, симметричной будет молекулярная орбита для связи О—О в молекуле кислорода или для связи С — С в молекуле этана. В тех случаях, когда молекула не симметрична относительно данной связи, электронное облако образующих связь электронов оказывается в большей или меньшей мере смещенным в сторону одного из атомов ( центр тяжести отрицательных зарядов оказывается смещенным относительно центра тяжести положительных зарядов). Это приводит к появлению у связи дипольного момента. Такая связь называется полярной. [c.12]

    Соединение ССЦ принадлежит к группе неполярных молекулярных веществ молекула U, несмотря на большую полярность каждой связи вследствие симметричного строения (тетраэдр), не имеет дипольного момента. [c.558]

    Мы уже обсуждали в других местах учебника электронное и геометрическое строение молекул галогенидов фосфора (см. разд. 7.5 и 7.6, ч. 1). Дипольные моменты (см. разд. 8.2, ч. 1) этих соединений, указанные в табл. 21.10, находятся в соответствии с их геометрическим строением. Соединения РХ3 обладают пирамидальной формой (см. рис. 21.4), и полный дипольный момент этих молекул зависит от полярности связей Р—X. Можно заключить, что полярность связей Р—X уменьщается в ряду Р—Р > > Р—С1 > Р—Вг > Р—I. Этот ряд согласуется с разностью электроотрицательностей между фосфором и галогенами. Молекулы рр5 обладают тригонально-бипира-мидальной структурой (см. рис. 21.4), причем центральный атом фосфора обобществляет пять электронных пар с пятью атомами X. Дипольные моменты пяти связей Р—X взаимно компенсируются, и полный молекулярный дипольный момент во всех случаях оказывается равным нулю. [c.322]


    Нужно отметить, что приведенная схема образования химической связи в молекуле СО является лишь первым приближением. Переход одной электронной пары атома кислорода с удерживанием ее также атомом углерода должен был бы сделать молекулу сильно полярной. Однако дипольный момент СО очень мал, он равен 0,36 10 Кл -м. В рамках приведенной схемы это можно объяснить некоторым сдвигом образующих связь электронных пар к атому кислорода. В следующем разделе дано более точное объяснение строения молекулы СО по методу молекулярных орбиталей, также приводящее к выводу, что связь в этой молекуле тройная. [c.103]

    В системе сорбент — сорбированная вода реактивное поле по мере увлажнения сорбента растет, что обусловливает увеличение дипольного момента комплекса даже в том случае, когда дополнительно сорбированные молекулы непосредственно не взаимодействуют с комплексом. При этом изменение е может происходить не только за счет роста е , но и за счет увеличения бос. В наибольшей мере это должно проявиться тогда, когда приращения Дея и Деоо в результате увлажнения материала отличаются незначительно. В этом случае увеличение е системы обусловлено протонной поляризацией в большей степени, чем ориентационной. Можно предположить, что при включении слабого электрического поля при измерении диэлектрических характеристик системы сорбент — сорбат происходит ориентация диполей, которая способствует переносу протона вдоль Н-связи. Последнее вызывает переход КВС из молекулярной в ионную форму. Вероятность такого перехода в системе сорбент — сорбат зависит от диэлектрической проницаемости среды, окружающей КВС она резко увеличивается при определенной для данной системы критической величине йо- [c.247]

    Из распределения спиновой плотности в радикале Ph NO следует, что доля резонансной структуры с N — О составляет около 30%, доля структуры с N = О — около 70%. Исходя из этой схемы, можно было бы ожидать, что дипольный момент связи N0 в радикале должен быть равен 4,3-0,7 -f 1,0 0,3 = 3,3 D (в случае, если бы неспаренный электрон не возмущал молекулярных орбит остальных электронов). Экспериментально полученное значение равно 2,3 D. Таким образом, почти во всех рассмотренных случаях дипольные моменты связей N0 в радикалах значительно меньше дипольных моментов тех же связей в молекуле, причем между спиновой и зарядовой плотностью нет однозначного соотношения. Причина этого может заключаться только в том, что неспаренный электрон возмущает все электронное облако и вызывает резкие изменения в распределении зарядов по системе связей. В частности, в случае азотокисных радикалов зарядовая плотность на атоме азота повышается вследствие взаимодействия неспаренного электрона с неподеленной парой р-электронов атома кислорода, в результате чего эта пара смещается к азоту и компенсирует большой дипольный момент невозмущенной связи. В окиси азота эта компенсация наиболее полная, в двуокиси азота — несколько меньшая. Даже в дифенилазотокиси наблюдается частичная компенсация, так как ожидаемый момент связи N0 (3,3 D) больше наблюдаемого (2,3 D). [c.140]

    Ассоциация между растворенным веществом и растворителем. Существует целый ряд работ, в которых изменения диэлектрической постоянной, дипольного момента или молекулярной поляризации приписываются ассоциации между молекулами растворенного вещества или между молекулами растворенного вещества и молекулами растворителя. Такой метод был использован Глесстоном [777], который одним из первых выдвинул предположение об образовании Н-связи с участием водородного атома группы С — Н (в системе хлороформ — ацетон). Исследование поляризации и спектров КР позволило Томеко и Хатчеру [2026] определить длину цепей и степень ассоциации в смесях ацетона с жирными кислотами. Образование комплексов было установлено в растворах простых эфиров в воде [580], а также спиртов и галогенсодержащих соединений в бензоле [1690]. Фью и Смит, а такжеСмити Уолшоу[649, 648, 1902, 1901, 1904], исследуя амины (преимущественно ароматические), пришли к выводу, что мезомерия приводит к усилению Н-связи с диоксаном. Аналогичное увеличение дипольного [c.27]

    Была изучена кристаллическая структура различных оловоорганических галогенидов установлено, что дихлориды диметил-, диэтил- и дипропилолова образуют ромбические кристаллы [39, 99, 327]. Определения молекулярного веса дийодида диэтилолова показывают, что он не ассоциирован [886]. Определены дипольные моменты ряда оловоорганических галогенидов [367, 637, 797, 806]. Все доводы говорят в пользу тетраэдрического расположения атомов в этих соединениях. Величины дипольных моментов различных оловоорганических хлоридов были использованы для расчета минимальных значений дипольного момента связи олово— хлор на основании этого было определено, что связь олово— хлор имеет ионный характер минимум на 27%. Эта величина удовлетворительно согласуется с величиной (35%), полученной на основании термохимических данных [796]. [c.77]

    В предыдущих разделах этой главы были рассмотрены некоторые характерные свойства ковалентных связей было указано, что при наличии примерно одинакового взаимного влияния атомов в молекулах такие свойства ковалентных связей, как энергия образования, полярность, ноляризуемостьт могут быть охарактеризованы некоторыми постоянными величинами. Если в молекуле имеются связи только такого типа, эти свойства молекулы в целом можно рассматривать как аддитивные, примерно равные сумме значений для отдельных связей, имеющихся в молекуле, и расхождение между вычисленными и найденными величинами оказывается незначительным. Длина связей в этих случаях может быть вычислена как сумма ковалентных радиусов. Однако, как показало физико-химическое исследование разнообразных органических соединений, во многих случаях наблюдаются отклонения от аддитивности этих свойств. Так, в некоторых (сравнительно многочисленных) случаях наблюдается изменение межъядерных расстояний по сравнению с обычными для основных типов ковалентных связей. Для некоторых соединений было обнаружено также существенное различие между экспериментально найденными и вычисленными (на основании принципа приближенной аддитивности) величинами энергии образования, теплоты сгорания, дипольного момента и молекулярной рефракции. При рассмотрении [c.106]

    При плавлении или осаждении из растворов он образует кристаллическую форму типа а (иногда называют форма И), имеющую планарную цыс-конформацию (спираль 21) расположение звеньев транс — гош, — тоанс — гош (ТГТГ ). Результирующий дипольный момент связей С—Р направлен параллельно оси основной цепи макромолекулы [150]. Если образец, например, в виде пленки, вытянуть, его кристаллическая структура переходит в р-форму (форма I), молекулярная конформация которой представляет собой плоский зигзаг (рис. 66), все звенья находятся в гране-положении, а дипольные моменты связей С—Р ориентированы перпендикулярно оси цепи. [c.117]

    Таким образом, у нас есть два возможных объяснения существования водородной связи. Систему с водородной связью можно рассматривать как электроноизбыточное соединение, связи в котором описываются в рамках модели молекулярных орбиталей так же, как мы это проделали Для ионов дигалогенидов. Поскольку несвязывающие электроны размещаются на концевых атомах, эти атомы должны обладать высокой электроотрицательностью. Однако атом водорода можно рассматривать и как акцептор электронов, поскольку в связях, которые он образует, заряд смещается в сторону его более электроотрицательного партнера (F, О или N). Дипольный момент HF (1,82 D) указывает на то, что заряд смещается от протона и его валентная оболочка остается заполненной лишь частично. При этом может возникнуть донорно-акцепторное взаимодействие с подходящим донором электронов. Более низкий дипольный момент молекулы НС1 (1,07 D) означает, что в ней взаимодействие такого типа должно быть слабее. У молекулы воды дипольный момент равен 1,82 D при этом дипольный момент -связи составляет 1,49 D (см. разд. 6.4). Водородные связи в молекуле воды занимают промеж,уточ-ное положение между связями в НС1 и в HF. Если это действительно так, то мы можем предположить, что между водой и отрицательными ионами, такими, например, как F , СГ, Вг или 1 , образуются сильные водордные связи. Из табл. 7.8 видно, что энергия связи С1—Н. .......... СГ равна 14 ккал, а энергия связи С1—Н.............Вг  [c.228]

    Соотношение между электрическими дипольными моментами и молекулярным строением. Описанными выше методами можно определить общий дипольпый момент молекулы. Он является векторной суммой моментов всех ее связей. В случае простой молекулы, как, например, молекулы воды, содержащей две связи Н—О, легко вычислить моменты связей по правилам векторного расчета. Для этого достаточно знать валентный угол (104 ) и общий дипольный момент (1,84 В) (рис. 32). [c.114]

    Все известные соединения фтора с кислородом или азотом являются газами с чрезвычайно низкими температурами кипения, что указывает на почти полное отсутствие полярности этих соединений. Они не обладают молекулярной симметрией, которая могла бы уравновешивать влияние дипольного момента связи следовательно, отсутствие полярности указывает только на то, что связи в этих фторидах в основном имеют ковалентный характер. Ковалентность фтора говорит о сродстве к электронам всей молекулы в целом. Поэтому фториды кислорода и азота являются сильными окислителями и сильными фторирующими агентами, но реагируют, в общем, с меньшей скоростью, чем элементарный фтор. Они также более устойчивы, или, верпсе, могут в течение более продолжительного времени находиться в метастабильном состоянии, чем аналогичные соединения других галогенов, и характеризуются большим разнообразием. [c.73]

    Согласно данным работы [32], дипольный момент связи N0 составляет около 2,0D. Молекулярные орбитали, полученные в расчете Мак-Ивена, не очень пригодны для оценки дипольного момента нитрозометана, так как в этих расчетах учитывается только часть о-электронов. Вклад я-электронов [c.16]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Защитная эффективность ингибиторов на основе органических соединений определяющим образом зависит от адсорбционной и электрохимической активности молекул, проявляющейся на границе раздела металл - коррозионная среда . В свою очередь, эта активность непосредственно связана с величинами квантЬво-химических и физико-химических параметров молекул, к которым относятся энергии верхних заполненных и нижних свободных молекулярных орбиталей (ВЗМО и НСМО), дипольный момент, максимальные и минимальные заряды на атомах, молекулярная масса и количество атомов в молекуле. В сгтучае соблюдения идентичности условий экспериментов можно в определенном приближении считать, что защитная эффективность ингибитора является функцией от квантово- и физико-химическт параметров его молекул. [c.288]

    Величина поверхностного натяжения является мерой интенсивности молекулярно-силового поля в поверхностном слое. Поскольку поверхностное натяжение является результатом нескомпенсированности меясмолекулярного взаимодействия в разных фазах, оно определяется разностью интеисивности взаимодействия молекул внутри каждой фазы (когезии) и взаимодействия молекул различных фаз (адгезии). Интенсивность молекулярных взаимодействий внутри ф .зы в теории поверхностных явлений обычно обозначают термином полярность . Полярность вещества в очень больш(л1 степени связана с такими ее параметрами, как дипольный момент молекул, диэлектрическая проницаемость, поляризуемость молекул, способность к образованию водородной связи меясду молекулами. Существенную роль играют также плотность (молярный объем) вещества, геометрия строения ьолекул, ориентация молекул в поверхностном слое, определяющая направление силовых полей, возможная взаимная растворимость граничащих фаз, их химическое взаимодействие. [c.189]

    Несколько иное явление наблюдается при обводнении или при поглощении влаги из воздуха нефтепродуктами. Молекулы воды имеют малый молеку шрный объем и большой дипольный момент. Эти молекулы ассоциируются с другими молекулами воды вследствие их способности к образованию водородных связей. Все углеводороды, входящие в состав нефтепродуктов, имеют значительно больший молекулярный [c.31]

    Введение в состав звеньев макромолекул различных функциональных или полярных групп вызывает поляризацию этих звеньев и придает им свойства диполя. Величины дипольного момента каждого звена макромолекулы зависят от степени поляризации, вызванной присутствием полярных групп, от количества полярных групп и их взаимного сочетания. В тех случаях, когда межмолекулярные расстояния сравнимы с расстояниями между зарядами, между молекулами, имеющими структуру диполей, возникают дополнительные связи, вызванные притяжением противо-. положиых полюсов соседних молекул, т. е. дипольные силы межмолекулярного притяжения. Взаимной ориентации молекулярных диполей противодействует тепловое движение молекул, поэтому величина дипольных сил в значительной степени зависит от температуры. Макромолекулы, состоящие из полярных звеньев, представляют собой совокупность диполей, создаваемых каждым звеном. Взаимодействие таких макромолекул в полимере вызывает взаимную ориентацию звеньев соседних цепей и притяжение их друг к другу. Чем больше дипольные моменты отдельных [c.28]

    В результате решения уравнений Хартри - Фока находят некоторую систему канонических орбитагтей. Химические процессы мыслятся большей частью в терминах разрьша одних и формирования других химических связей. В связи с этим исходная информация о молекулярных орбиталях может быть преобразована в новую с тем расчетом, чтобы описание электронной структуры было дано в терминах локализованных орбиталей. При этом для определенного класса молекулярных систем теоретически удается установить некоторые характеристики отдельной связи, такие, как дипольный момент, продольная и поперечная поляризуемости и др. В методе МО не вводят априорные понятия о кратности связей. Тем не менее после завершения решения уравнений Хартри — Фока могут быть найдены величины, которые коррелируют со сложившимися представлениями о кратности в рамках представлений о спин-валентности. [c.186]

    Из физико-химических (инструментальных) йй-бдов исследования, применяемых для установления молекулярной структуры органических веществ, наиболее часто используются оптическая спектроскопия (в ультрафиолетовой, видимой и инфракрасных областях спектра), спектроскопия ядерного магнитного резонанса (ЯМР), хроматография, метод дипольных моментов молекул, рентгеноструктурный анализ, молекулярная масс-спектроскопия и др. С помощью этих методов получают ценную информацию о взаимном расположении атомов в молекуле, их взаимовлиянии, внутримолекулярных расстояниях, поляризуемости связей, валентных углах и распределении электронной плотности и т. д. [c.123]


Смотреть страницы где упоминается термин Дипольный момент связь с молекулярной: [c.117]    [c.186]    [c.17]    [c.27]    [c.117]    [c.596]    [c.72]    [c.227]    [c.244]    [c.107]   
Физическая биохимия (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольные моменты связей и структура молекул. Методы валентных связей (ВС) и молекулярных орбиталей (МО)

Дипольный момент



© 2025 chem21.info Реклама на сайте