Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебра циано-комплексы

    Ионы меди, серебра, цинка в таких комплексных ионах достаточно прочно связаны с молекулами аммиака, а их концентрация в растворе за счет диссоциации комплекса, например [c.259]

    Серебро извлекают из руд действием раствора КСЫ в присутствии кислорода, причем образуются цианидный комплекс серебра и щелочь затем серебро из комплекса восстанавливают до металла порошком цинка. Написать уравнения реакций растворения серебра и восстановления серебра цинком. [c.173]


    Цианидные растворы применяют при электропокрытии золотом, серебром, цинком, кадмием и другими металлами. Концентрация jie-комплексных ионов металла в этих растворах очень мала, что способствует получению однородных тонкозернистых покрытий. Другие анионы, образующие комплексы (тартрат, цитрат, хлорид, гидроксил), также применяют в растворах, используемых при получении покрытий. [c.478]

    Наиболее удобными реагентами для выделения сернистых соединений из нефтепродуктов являются некоторые неорганические соли, образующие с органическими сернистыми соединениями комплексы, нередко хорошо кристаллизующиеся и обладающие резкой температурой плавления. Комплексы эти весьма разнообразны. Они образуются с различными солями меди, серебра, цинка, кадмия, ртути, платины, палладия, [c.243]

    Комплексы, в которых необходим учет как поляризации координированных групп, так и центрального атома (например, аммиакаты серебра, цинка, кадмия). [c.131]

    Взаимодействие нефтяных сульфидов с галогенами, галогеналкилам и, солями и комплексами тяжелых металлов. Нефтяные сульфиды образуют стабильные комплексы донорно-акцепторного типа с галогенами, галоген-алкилами (метилиодидом и др.), с солями металлов — олова, серебра, ртути, алюминия, цинка, титана, галлия и другими кислотами Льюиса за счет передачи неподеленной пары электронов атома серы на свободную электронную орбиталь акцептора. Важнейшие комплексообразователи — хлорид алюминия, тетрахлорид титана, хлорид ртути(II), ацетат серебра, карбонилы железа. Реакции комплексообразования не селективны, в той или иной степени они протекают и с другими типами гетероатомных соединений. Однако в сочетании с другими физико-химическими методами ком-плексообразование служит важным инструментом установления состава, строения сульфидов. [c.250]

    Таким образом, появление белого осадка цианистого серебра является признаком достижения точки эквивалентности. При этом титровании удобнее использовать в качестве индикатора осадок йодистого серебра, которое окрашено в желтый цвет. Вначале, при избытке ионов циана, йодистое серебро растворяется вследствие образования цианидного комплекса. При достижении точки эквивалентности йодистое серебро снова выпадает в осадок и раствор окрашивается в желтый цвет. [c.270]

    Запись данных.опыта. Написать уравнения получения осадка хлорида серебра, его растворения в аммиаке с образованием комплекса серебра и взаимодействия полученного комплексного соединения с цинком. Какой ион является окислителем в последней реакции Написать уравнение электролитической диссоциации комплексного иона и ионное уравнение окислительно-восстановительной реакции. [c.124]


    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Зависимость относительной устойчивости комплексов цинка и серебра от [c.181]

    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]

    Напишите формулы комплексных ионов серебра, принимая координационное число 2, если в качестве лигандов будут а) молекулы аммиака, б) ионы циана. Допишите формулу внешней сферы комплексов. [c.189]

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]

    Цианид-ионы образуют устойчивые комплексы со многими ионами металлов. Их можно использовать для маскирования таллия (III), никеля (II), железа (II), палладия (II), платины (II), серебра (II), меди (II), цинка (II), кадмия (II), ртути (II) и некоторых других ионов. Однако применять цианид-ионы для этой цели можно только в щелочной среде рК л = 9,3. Кислотная форма (ПСЫ) не только летучая, а также сильно ядовитая. Сильный яд также и сами цианид-ионы. [c.238]

    В зависимости от кислотности раствора можно разделить катионы всех металлов на две большие группы. Еще большее дифференцирующее действие проявляют органические реактивы, которые являются слабыми кислотами и в то же время образуют очень прочные комплексы с ионами металлов. В качестве примера на рис. 26.3 приведен дитизоновый спектр , т. е. зависимость экстракции дитизонатов некоторых металлов от pH раствора. Из рисунка видно, что ртуть и серебро экстрагируются тетрахлоридом углерода в виде дитизонатов металлов в очень кислой среде ионы висмута и меди экстрагируются в менее кислой среде с повышением pH экстрагируются ионы цинка, кадмия, индия и других металлов. Таким образом, регулируя только pH раствора, можно в значительной мере провести разделение металлов. Подобным образом можно разделить ионы металлов в виде гидр-оксихинолинатов и других комплексных соединений с органическими реактивами. [c.536]

    Электрод пригоден для определения цианид-ионов в диапазоне концентраций от 10" до 10 моль/л. Следует иметь ввиду, что при концентрации цианида выше 10" моль/л время жизни электрода значительно сокращается вследствие медленного растворения мембраны из-за образования растворимых комплексов серебра с циа-нид-ионами. [c.200]

    Кроме явления самокомпенсации необходимо учитывать и другие факторы, мешающие проявлению электрической активности вводимых примесей. Например, растворимость ряда электрически активных примесей может быть очень низкой. Некоторые акцепторные примеси могут, видимо, перераспределяться между донорными н акцепторными состояниями, как это наблюдалось для серебра в сульфиде кадмия и лития в теллуриде цинка [101]. Отмечалось, что галогены, когорые должны бы проявиться как доноры, оказываются неактивными из-за образования комплексов со случайно присутствующими примесями (например, с натрием, стронцием, железом) [102]. [c.151]


    Индий хорошо экстрагируется в виде бромидного комплекса, например изопропиловым эфиром из 6 М бромистоводородной кислоты. Отделение индия в виде бромида менее селективно, чем в виде иодида. Вместе с индием в экстракт переходят галлий (III), железо (III), таллий (III) и др., цинк остается в водной фазе. (От металлов, образующих растворимые аммиачные комплексы — серебра, меди, никеля, кобальта, цинка, кадмия, индий можно отделить путем осаждения его аммиаком в виде 1п(0Н)з). [c.215]

    Металлы целесообразно выделять цинком после отделения серебра, ртути и свинца в виде хлоридов и щелочноземельных металлов и свинца в виде сульфатов. В растворе остается достаточно кальция для его обнаружения, особенно если раствор упарить, так как растворимость СаЗО 2,5 г/л. Его можно обнаруживать в виде оксалата кальция. При этом алюминий, хром, марганец, железо дают растворимые комплексы (Ме(С204).. 1 , не мешающие обнаружению кальция. [c.151]

    Некоторые из этих комплексов очень устойчивы устойчивость ци анидного комплексного иона серебра Ag( N)2, например, настолько велика, что добавление иодид-иона не вызывает осаждения иодида серебра, хотя произведение растворимости иодида серебра очень мало. Ионы гексацианоферрата(П) Fe( N)6 , гексацианоферрата(1П Fe( N) -H гексацианокобальтата(111) oi N) настолько устойчивы, что они почти не разрушаются под действием сильной кислоты. Другие комплексные ионы при действии сильной кислоты разлагаются с выделением цианистоводородной кислоты H N. [c.478]

    Лигандообменную хроматографию применяют для разделения в водной среде соединений, представляющих большой интерес для органической химии и биохимии аминов, аминокислот, белков, нуклеотидов, пептидов, углеводов. При этом в вчестве комплексообразующих используют ионы меди, цинка, кадмия, никеля, серебра и железа. Ионы ртути и серебра в неполярной среде алифатических углеводородов образуют лабильные комплексы с ненасыщенными и ароматическими углеводородами. Большими достоинствами лигандообменной хроматографии является ее селективность и отсутствие жестких требований к сорбенту, который может быть прочно связан ионами металла или только пропитан солями металла. [c.82]

    Комм. По каким причинам происходит образование и разрушение аммиачных комплексов Почему первоначально выпавший в Пд осадок оксида серебра(1) переходит в раствор при введении избытка аммиака Почему аммиакат серебра разрушается при введении в смесь цинка (Пд) Каков состав комплекса цинка(П), присутствующего в конечном растворе в Пд Какими способами можно пол5Д1ить аммиачные комплексы, неустойчивые в водном растворе, например хлорид гексаамминалюминия(П1)  [c.195]

    Данные о зависимости ионообменных равновесий на цеолите А от природы аниона и от присутствия комплексообразователей весьма ограниченны. Авторы работы [18] исследовали обмен ионон кальция, кадмия и цинка в растворах различных электролитов и разработали метод определения констант ионообменного равновесия для комплексных анионов, который, кроме того, позволяет рассчитать число лигандов в образующихся комплексных соединениях. Установлено, что коэффициент селективности уменьшается с возрастанием концентрации электролита. Резкое снижение селективности объясняется тем, что, взаимодействуя с обмениваемым катионом (например, кадмием), электролит образует анионный комплекс. Селективность снижается также из-за участия в обмене катиона электролита. В качестве метода декатиони-ровапия использовалась реакция образуется нерастворимой соли, в частности соли серебра. [c.557]

    Образование таких комплексов происходит за счет взаимодействия п-электронов атома азота со свободными р-орбита-лями атома цинка и Зё-электронов атома цинка с тс -разрыхля-ющими орбиталями молекул диафена ФП [210]. Участие атома цинка в образовании 71 -разрыхляющей связи подтверждается тем, что для перевода одного из его ё-электронов на более высокий энергетический уровень требуется энергия, равная всего 15,510 Дж-см [211]. Аналогичные молекулярные комплексы с органическими солями серебра описаны в [210.  [c.205]

    Разделение триэтаноламином N (СН2СН20Н)з. Триэтанол-амин образует с кобальтом растворимое комплексное соединение карминово-фиолетового цвета, соли никеля и меди дают растворы, окрашенные в синий цвет. Катионы ртути (1), свинца, серебра, кадмия, ртути (II), висмута, олова, железа, алю.миния, хро.ма и цинка образуют осадки различного цвета. Триэтанол-амин применяется для качественного обнаружения кобальта [747, 868], для разделения кобальта и никеля [1224], отделения железа от кобальта и никеля [954] и как групповой реагент в качественно.м анализе [276]. В последне.м случае при прибавлении 20%-ного раствора триэтаноламина к растворам, содержащим катионы алюминия, марганца, цинка, висмута, олова (II), сурьмы и железа(II), образуются осадки, нерастворимые в избытке триэтаноламина, а катионы трехвалентного хро.ма,. меди, кобальта и никеля образуют окрашенные растворимые соединения катионы ртути, свинца и четырехвалентного олова в этих условиях дают бесцветные растворимые комплексы. [c.71]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]


Смотреть страницы где упоминается термин Серебра циано-комплексы: [c.78]    [c.232]    [c.36]    [c.459]    [c.229]    [c.406]    [c.181]    [c.120]    [c.188]    [c.102]    [c.311]    [c.496]    [c.53]    [c.224]    [c.70]    [c.119]    [c.39]    [c.50]    [c.185]    [c.196]   
Инфракрасные спектры неорганических и координационных соединений (1966) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Пот ей циал

Серебро комплексы

Цинкои

циано



© 2024 chem21.info Реклама на сайте