Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция электролитическая

    До СИХ пор рассматривалась роль, которую адсорбция играет лишь непосредственно в самом процессе электролитического восстановления (или окисления). Этот фактор должен сказываться и [c.452]

    Иногда применяются такие методы, как электролитическое осаждение, адсорбция из паров или жидкости и осаждение катализатора на поверхности носителя путем разложения некоторых веществ. [c.316]


    СО щелочным глиноземом, но регенерация осуществлялась электролитическим путем. Предложены следующие стадии процесса реакция адсорбции [c.173]

    Электро- статический Уменьшение межфазного натяжения, вследствие появления электрического потенциала и двойного электрического слоя на межфазной поверхности, обусловленного поверхностной электролитической диссоциацией или адсорбцией электролитов Введение в систему электролитов [c.25]

    Однако при большой интенсивности ультразвукового поля действие его не ограничивается только выравниванием концентрации ионов металла в прикатодном слое. В зависимости от интенсивности и частоты колебаний изменяются условия адсорбции, пассивирования и другие явления на электродах, что соответственно влияет и на структуру электролитических осадков. [c.349]

    Данные, характеризующие анодное растворение электролитического никеля в растворах, содержащих СГ, даны на рис. 138. При концентрации СГ 0,05—1-н. пассивность не возникает при значительных силах тока. Ионы хлора, избирательно адсорбируясь на аноде, препятствуют адсорбции атомов кислорода или ионов гидроксила. Этим самым устраняется пассивность никеля. [c.299]

    Электролиз можно применять для выделения следовых количеств элементов, стоящих в ряду напряжений дальше, чем элемент матрицы или другие мешающие определению компоненты. При этом можно провести кулонометрическое определение с одновременным электрохимическим отделением или выделить элемент электрохимически или химически, а затем применить другие методы анализа. После выделения следовых количеств элементов на проволоке из инертного тугоплавкого металла их можно определить эмиссионными методами, внося проволоку, например, в пламя. Электролиз можно также применить для отделения матрицы, если металл матрицы стоит в ряду напряжений дальше, чем элемент, содержащийся в следовых количествах. Такие выделения обычно осуществляют, проводя восстановление на ртутном катоде. Преимуществом использования ртутного катода по сравнению с электролитическим осаждением является то, что не происходит адсорбции следовых количеств элемента, т. е. определяемый элемент практически полностью остается в растворе, не содержащем ионов металла матрицы. Но с другой стороны, при этом не достигается концентрирование определяемого элемента. [c.422]

    Свойства коллоидных растворов зависят не только от степени их дисперсности, но и от их природы. Как показали многочисленные исследования, ца границе раздела между дисперсионной средой и частицами дисперсной фазы возникает так называемый двойной электрический слой, который играет важную роль в агрегативной устойчивости лиофобных систем. Этот слой может возникать либо в результате адсорбции ионов определенного знака (потенциалопределяющие ионы) на поверхности коллоидных частиц, либо вследствие электролитической диссоциации молекул поверхностного слоя самих частиц. [c.173]


    В процессе электролитического роста кристаллов большую роль играет адсорбция органических веществ, которые специально добавляются в раствор или присутствуют в нем как посторонняя примесь. [c.334]

    Адсорбция органических веществ определяет целый ряд особенностей роста электролитических осадков. Влияние органических веществ на электроосаждение металлов было впервые исследовано [c.390]

    Важной задачей является выяснение закономерностей и развитие теории влияния поверхностно-активных органических веществ на электродные процессы в условиях роста электролитических осадков, а также выяснение закономерностей адсорбции органических соединений в неводных средах и влияния природы растворителя на электродные процессы. [c.305]

    Теория Нернста приводит к ошибочному выводу о независимости стандартного электродного потенциала от природы растворителя, поскольку величина Р не является функцией свойств растворителя. Нельзя также считать правильным первое положение теории, поскольку скачок потенциала на границе металл — раствор не совпадает с электродным потенциалом, а представляет его часть. В электродный потенциал входят некоторые величины, характеризующие специфическую адсорбцию ионов на поверхности металла, а также работу выхода иона из данного металла. Недостатком теории Нернста является и то, что понятие об электролитической упругости растворения металла не имеет определенного физического смысла. Все это привело к необходимости пересмотра теории возникновения электродного потенциала. [c.164]

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]

    Устойчивость гидрофобных золей сильно повышается при введении в раствор даже незначительных количеств высокомолекулярных соединений, растворимых в дисперсионной среде (т. е. гидрофильных золей). Например, коагуляцию многих золей замедляют или предотвращают желатин, яичный белок, крахмал и даже сахар (перечислено в порядке уменьшения защитного действия). Это явление, называемое коллоидной защитой, объясняется адсорбцией этих веществ на поверхности частиц золя. При этом в результате определенной ориентации групп —ОН, —СООН, —ЫНг макромолекул образуются дополнительные устойчивые гидратные оболочки, препятствующие слипанию частиц. Кроме того, возможность электролитической диссоциации по этим группам изменяет (повышает) электрокинетический потенциал, что также способствует защите золя от коагуляции. [c.152]

    Кроме адсорбции ионов, могут, вообще говоря, иметь место и другие причины, обусловливающие возникновение заряда коллоидных частиц. Так, в некоторых случаях возможна их собственная электролитическая диссоциация с отщеплением большего или меньшего числа ионов определенного заряда, причем сама коллоидная частица, играющая в данном случае роль иона-гиганта, приобретает противоположный заряд. Подобный характер возникновения последнего вероятен, например, для многих органических красителей. [c.615]

    К электрофорезу близок по своей природе электроосмос. Сущность его заключается в происходящем под действием постоянного электрического тока перемещении жидкости, заключенной в капиллярах или порах твердого тела. Причиной этого явления может быть контактная электризация жидкости, собственная электролитическая диссоциация вещества поверхности или неодинаковая адсорбция ею ионов разного знака, в результате чего жидкость приобретает заряд. Направление перемещения определяется знаком этого заряда и зависит как от состава жидкости, так и от материала твердого тела. -Например, вода при контакте со стеклом заряжается положительно и поэтому перемещается к катоду. Электроосмос находит практическое использование в некоторых областях техники. Например, с его помощью может быть значительно ускорен процесс дубления кож. [c.616]


    Дальнейшему развитию физической химии способствуют работы в этой области ряда советских ученых И. А. Каблукова, который установил явление гидратации ионов электролитов в водных растворах и химического взаимодействия в процессах электролитической диссоциации и др. Н. С. Курнакова, изучавшего физикохимические свойства систем в зависимости от их состава и явившегося создателем физико-химического анализа и др. Н. А. Шилова, выполнившего ряд работ в области кинетики сопряженных химических реакций и адсорбции растворенных веществ из растворов и др. [c.6]

    Согласно утверждениям К. М. Горбуновой, образование на катоде блестящих электролитических осадков связано с наличием на поверхности катода пленки, часто коллоидного типа, которая играет определенную роль в подводе разряжающихся ионов к поверхности электрода (так называемый диффузионно-гидродинамический фактор). Другие авторы связывают роль некоторых блескообразующих добавок со скоростью их адсорбции и десорбции на поверхности электрода. Быстрая адсорбция и десорбция молекул поверхностно-активного вещества препятствует осаждению металла в виде крупных кристаллов и способствует сглаживанию поверхности. [c.138]

    В настоящее время нет единой теории, объясняющей механизм действия поверхностно активных веществ на структуру электролитических осадков. Согласно теории комплексообразования, добавки образуют в объеме раствора с разряжающимися ионами металла своеобразные адсорбционные комплексы. При этом катодная поляризация повыщается в результате замедленности образования в прикатодном слое разряжающихся ионов из комплекса. По-видимому, эта точка зрения справедлива лишь в тех случаях, когда добавки вводят Б электролит в больших количествах, однако, как правило, поверхностно активные вещества применяют в малых концентрациях. Согласно адсорбционной теории действия добавок, поверхностно активные вещества, адсорбируясь на отдельных активных участках, способствуют равномерному росту осадка. Поскольку при этом активная часть поверхности катода сокращается, повыщается плотность тока (катодная поляризация), что благоприятствует формированию мелкокристаллических осадков. При этом в ходе электролиза возможно перераспределение участков адсорбции и десорбции добавок. [c.248]

    Опыт проводится под т я г о й ). к 50 мл 0,25%-ного раствора АзгОз прилейте 4—5 мл сероводородной воды раствор окрашивается в желтый цвет. Составьте уравнение реакции образования сульфида мышьяка и схему строения его мицеллы в коллоидном растворе, имея в виду адсорбцию ионов Н5", возникающих при электролитической диссоциации сероводорода. К какому типу коллоидов относится золь сульфида мышьяка Золь оставьте для опытов 5 и 7. [c.102]

    Электрический заряд на коллоидных частицах возникает в результате процесса электролитической диссоциации вещества дис-нерсиой фазы или вследствие избирательной адсорбции ионов из дисперсио1шой среды на поверхности частиц дисперсной фазы. Наличие заряда у коллоидных частиц можно обнаруж1ггь, пропуская через коллоидную систе.му постоянный электрический ток, под действием которого частицы перемещаются к электродам. Перемещение частиц дисперсной фазы под действием электрического тока называется электрофорезом. [c.194]

    Электростатический фактор заключается в уменьщении межфазиоро натяжения вследствие возникновения двойного электрического слоя иа поверхности частиц в соответствии с уравнени" ем Липпмана. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов. Основы электростатической теории устойчивости лиофобных систем излагаются в разделе VI. Б. [c.275]

    Характерная поляризационная кривая анодного пассивирования электролитического никеля (твердый раствор водорода в N1), снятая в 1-н. растворе N 504 с учетам не только силы тока и потенциалов, но и количества электричества, показана яа рис. 72 . На участке аЬ происходит образование ионов никеля, при этом поляризация достигает +0,25 в. Далее следует падение силы тока и дальнейшие подъемы потенциала до 0,4 в (участок Ьс). На этом участке начинается адсорбция ионов гидроксила и повышение емкости анода. По количеству затраченного электричества и по приросту потенциала на участке Ьс, принимая приближенно, что истинная повержность свежераство-ренного металла равна десятикратной геометрической поверхности, получаем прирост емкости электрода, равный 900 мкф1см . [c.116]

    В настоящее время разработан новый способ электролитического получения кобальта из его хлористой соли с применением нерастворимых анодов. Растворы от никеля и меди очищают обменной экстракцией жирными кислотами, а от свинца и цинка — адсорбцией анионитом ЭДЭЮП.  [c.405]

    Обменная адсорбция используется также для улавливания ценных веществ из чрезвычайно разбавленных растворов, из которых выделять эти вещества другими методами нерентабельно. Таким образом, можно регенерировать, например, медь из рудничных вод и сточных вод производства искусственнс Ч) медноаммиачного шелка серебро из сточных вод фабрик, изготовляющих кинопленку хром из электролитических хромовых ванн и т. д. Обменная адсорбция применяется при извлечении из растйбров радиоактивных элементов. [c.151]

    Из макроступеней развиваются макроспирали, обнаружение которых в микроскоп служит доказательством роли винтовых дислокаций в процессах роста кристаллов. Конец микроспирали можно рассматривать как сферу с очень маленьким радиусом кривизны (порядка 10 м). Диффузия к такой сфере оказывается очень быстрым процессом (см. 37). Если стадия разряда на конце спирали протекает о большой скоростью, то вершина спирали начинает расти быстрее, чем остальная часть кристалла. Это является одной из причин образования дендритов при электроосаждении металлов из водных растворов и расплавов. В процессе электролитического роста кристаллов большую роль играет адсорбция органических веществ, которые специально добавляются в раствор или присутствуют в нем как посторонняя примесь. [c.319]

    Адсорбция органических веществ определяет целый ряд особенностей роста электролитических осадков. Так, наблюдается увеличение поперечного сечения тонких кристаллических нитей (так называемых усов или вискеров) при увеличении силы тока в цепи. Поперечное сечение нити меняется таким образом, что плотность тока, а следовательно, и линейная скорость роста нити остаются постоянными. Рост усов с торца объясняется адсорбцией органических веществ и торможением процесса электроосаждения металла на боковой поверхности усов. Адсорбция примесей происходит и на торце, однако ее величина определяется соотношением скорости осаждения металла и скорости адсорбции органического вещества и поэтому она меньше, чем на боковой поверхности. При уменьшении скорости осаждения металла в первую очередь происходит отравление края торца, и диаметр нити уменьшается. Наоборот, при увеличении силы тока адсорбция на краях торца не успевает происходить, и диаметр нити увеличивается. Рост усов сопровождается внедрением органических молекул в осадок. Согласно количественной теории рост нитевидных кристаллов возможен, если ток превышает некоторую критическую величину / р= onst где г — радиус нити — концентра- [c.374]

    Пособие, написанное учениками основоположника современной пюретическон электрохимии академика А, Н, Фрумкина, посвящено наложению теоретических основ электродных процессов в растворах органических веществ. Актуальность рассматриваемых проблем С1 язана с широким применением органических соединений в прикладной электрохимии для регулирования свойств электролитических покрытий и ингибирования коррозии, в органическом электросинтезе, в топливных элементах и химических источниках тока, В книге изложены методы изучения адсорбции органических соедпненггй и закономерности обратимой и необратимой адсорбции на электродах, влияние обратимой адсорбции на две стадии электродного процесса — массопереноса и разряда — ионизации, закономерности электрохимических реакций с участием органических соединений. [c.2]

    Рассмотрим пример образования золя с отрицательно заряженными частицами. В электрическом поле частицы такого золя перемещаются к аноду. На рис. ПО приведена схема строения мицеллы золя кремневой кислоты. Заряд такой частицы возникает без адсорбции ионов извне, а за счет электролитической диссоциации поверхностного слоя самого ядра. Молекулы 5102, реагируя с водой, соприкасающейся с поверхностью ядра, образуют кремневую кислоту Н2310з. Эта кислота представляет собой слабый электролит, [c.330]

    При контакте ионита с водными растворами электролитов происходит его электролитическая диссоциация, обеспечивающая возможность ионного обмена. Иойный,обмен представляет собой стехиометрическое замещение в обмен на каждый эквивалент одного иона, поглощенного из раствора, ионит отдает в раствор один эквивалент другого иона с зарядом того же знака. Прн адсорбции, в отличие от обменного процесса, адсорбент поглощает растворенное вещество (электролит или неэлектролит), не отдавая в раствор никакого другого вещества. Хотя это различие и кажется достаточно отчетливым, на практике часто трудно провести границу между названными процессами, так как ионный обмен почти всегда сопровождается адсорбцией, а большая часть обычных адсорбентов, например активный уголь, силикагель, оксид алюминия и др., могут действовать как иониты. [c.73]

    Сорбция ИОНОЙ ш водных, растворов была первоначально изучена на минеральных сорбентах. Механизм этого процесса сводится к следующему. На поверхности раздела сорбент—раствор возникает двойной электрический слой. Поверхность сорбента несет заряды какого-то одного знака, возникаюшие либо в результате адсорбции ионов из растпора, либо в результате электролитической диссоциации молек) л поверхности самого сорбента. В растворе вблизи поверхности сорбента находятся ионы противоиолоЖ ного знака, концентрация которых убывает по мере увеличения расстояния От поверхности в глубь раствора диффузный слой), [c.506]


Смотреть страницы где упоминается термин Адсорбция электролитическая: [c.30]    [c.227]    [c.278]    [c.3]    [c.298]    [c.5]    [c.310]    [c.298]    [c.25]    [c.371]    [c.372]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.125 ]




ПОИСК







© 2025 chem21.info Реклама на сайте