Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическое разделение

    Жидкостное и кристаллическое разделение фаз [c.278]

    При кристаллическом разделении системы на две фазы диаграмма состояния имеет вид, представленный на рис. 10.2, г. Пограничная кривая является линией ликвидуса, вдоль которой из жидкого раствора выделяются кристаллы одного из компонентов. Линия ликвидуса принципиально отличается от бинодали [10], во-первых, тем, что при 100%-ном содержании компонента она пересекает ось ординат, и, во-вторых, тем, что линии, пересекающие, пограничные кривые, не являются кодами, т. е. не соединяют сосуществующие растворы, составы которых ни при каких температурах не становятся одинаковыми. Это означает, что система не имеет критической температуры растворения. [c.282]


    На рис. 10.6 представлена типичная диагра.мма разделения на две фазы кристаллических полимеров. В области более низких температур наблюдается кристаллическое разделение. При этом обычно удается получить только правую ветвь кривой ликвидуса. Область выше кривой отвечает однофазным растворам, область под кривой — двум фазам набухшему полимеру и его кристаллам. Наличие кристаллической фазы в набухшем осадке иногда удается обнаружить непосредственно рентгеновским методом. Но в ряде случаев выделившиеся из раствора кристаллики настолько малы. [c.285]

    Кристаллизация полимера в растворе может наблюдаться и в тех случаях, когда термодинамическое сродство растворителя ухудшается с изменением температуры, например при охлаждении. Поэтому при кристаллическом разделении фаз (см. стр. 285) в области температур, предшествующих распаду системы на две фазы, растворение полимера сопровождается выделением тепла, причиной которого является образование кристаллических зародышей. [c.332]

    Кристаллическая структура твердых углеводородов имеет весьма важное значение в процессах депарафинизации и обезмасливания, поскольку форма и размеры кристаллов преимущественно предопределяют скорость и полноту разделения фаз и, следовательно, производительность фильтровальных аппаратов. [c.253]

    Но агрегатные кристаллические образования но всегда обладают достаточной жесткостью и при высоких рабочих давлениях фильтрации способны сливаться в единую сплошную непроницаемую массу. Чтобы избежать этого, процесс фильтрации подобных продуктов приходится вести при невысоких перепадах давлений, которые может выдержать механическая прочность отфильтровываемых кристаллических агрегатов. Но уменьшение перепада давлений снижает эффективность процесса фильтрации. В этом случае могут оказаться целесообразными другие методы разделения, например центрифугирование, при которых сжимаемость осадка не имеет такого решающего отрицательного значения. [c.125]

    Установка включает следующие основные секции реакторную, в которой сырье или его бензиновый раствор контактирует с кристаллическим карбамидом в присутствии активатора (метанола) с образованием комплекса промывки и разделения на твердую и жидкую фазы, где оба процесса протекают в саморазгружающихся центрифугах (во II или в III ступени центрифугирования) разложения, где комплекс разделяется (разрушается) при нагревании в среде растворителя на кристаллический карбамид и жидкий или мягкий парафин промывную, в которой метанол и следы карбамида отмывают водой от растворов депарафината и парафина. В схему входят также блоки ректификации, где регенерируют бензин и метанол (от депарафината, парафина и воды соответственно) для возвращения в процесс, и осушки депарафината и парафина после регенерации растворителя и активатора (показаны [c.90]


    Разделение продуктов реакции может быть осуществлено так же (см. гл. IV), как в случае синтеза дифенилолпропана конденсацией фенола с ацетоном. При использовании катализаторной системы фтористый бор -ь ортофосфорная кислота сначала реакционную смесь нейтрализуют содой или гидроокисью кальция, а затем с паром отгоняют фенол . Соединения фтористого бора с уксусной кислотой и с диэтиловым эфиром можно отогнать вместе с фенолом в вакууме . Применим также способ выделения дифенилолпропана из реакционной массы в виде кристаллического аддукта с фенолом, который разрушают методами, описанными в гл. IV. Иногда реакционную массу разбавляют водой и отделяют водный слой, содержащий катализатор, от органического, который состоит из фенола, дифенилолпропана и побочных продуктов. Затем из органического слоя отгоняют фенол. [c.97]

    В случае получения обычного кристаллического парафина потением во время процесса после удаления масла происходит отделение фракций с различной температурой плавления. Кристаллизация же из растворителя может дать продукт, который не может быть разделен дробной кристаллизацией. Так как разница в температурах плавления основывается на разнице в молекулярных весах, фракционная перегонка дает хорошее распределение температур плавления. Торговый парафин, плавящийся при 56° С, перегонялся нри 10 мм рт. ст. в 10% фракции. [c.525]

    В химических лабораториях приходится нередко проводить перекристаллизацию веществ с целью их очистки, для разделения смеси кристаллических веществ и в ряде других случаев. Гфоцесс перекристаллизации основан на свойстве кристаллических веществ изменять свою растворимость в данном растворителе в зависимости от температуры. В огромном большинстве случаев растворимость кристаллических веществ с повышением температуры увеличивается, а с понижением—уменьшается, причем для разных веществ температура, при которой образуются насыщенные растворы, не одинакова. Это дает возможность, охлаждая горячие растворы, добиться дробного осаждения кристаллических веществ и таким образом отделить одно вещество от другого. При перекристаллизации очень большое значение имеет скорость охлаждения полученного насыщенного раствора. От этого зависит размер кристаллов, выделяющихся из данного раствора. Обычно при быстром охлаждении образуются мелкие кристаллы, а при медленном—более крупные. [c.149]

    Разделение при помощи комплексных соединений и соединений включения. Процессы разделения соединениями включения проводятся в гетерогенной системе газ —твердая фаза или жидкость— твердая фаза с непременным образованием в каждом случае твердого кристаллического соединения, в которое включен компонент, выделяемый впоследствии. Это свойство, общее для всех процессов с использованием соединений включения, определяет технологию, которая аналогична технологии ад- [c.75]

    Цеолиты с более рыхлой структурой (размеры пустот относительно велики — от 3 до 6 А) могут включать не только ионы, но к некоторые молекулы (инертных газов, СОз, N1 3, Ог, N3, углеводородов, спиртов и др.). Благодаря самой природе кристаллической решетки (которая у цеолитов всегда существует до начала процесса включения) включение молекул в пустоты имеет адсорбционный характер и меньше зависит от формы пустот кристаллической решетки. Однако знание размеров этих пустот позволяет подобрать соответствующие цеолиты при разделении углеводородов в зависимости от размеров их молекул. В настоящее время налажено производство цеолитов (молекулярных сит) с поперечным сечением пустот от 4 до 11 А. Так, цеолиты, содержащие Ыа, служат для разделения молекулы сечением менее 4 А, а содержащие Са, разделяют молекулы сечением менее 5 А. [c.83]

    Диаграммы состояния, подобные описанным выше, строятся на основании опытных данных. Первые работы по изучению зависимости между температурой и концентрацией растворов, равновесных с кристаллической фазой, были выполнены около двухсот лет тому назад Ломоносовым и несколько раньше Глаубером. Как в этих, так и в ряде следующих работ состав раствора, равновесного с кристаллами, определялся с помощью химического анализа. Этот метод пригоден лишь в ограниченном числе случаев, так как, с одной стороны, точное разделение кристаллов и жидкой фазы иногда встречает непреодолимые трудности, например при большой вязкости раствора или при высоких температурах. С другой стороны, не всякое соединение достаточно устойчиво, чтобы его можно было выделить в чистом виде, и не для всякого вещества имеются достаточно надежные методы анализа. [c.378]

    Время операции отжим осадка для кристаллических материалов приближенно можно найти в зависимости от их влажности, длительности центрифугирования и фактора разделения. [c.321]


    Запасы шабазита и других природных цеолитов незначительны. Кроме того, они часто загрязнены примесями других минералов или представляют собой смеси различных цеолитов. Это затрудняет получение однородного кристаллического вещества и использование цеолитов для разделения газовых и жидких смесей. В связи с возрастающей потребностью в цеолитах для разделения смесей в промышленных масштабах возник вопрос о получении их синтетическим путем. В результате были разработаны процессы приготовления цеолитов не только известных типов, но и совершенно новых. [c.102]

    Однородная кристаллическая структура природных и синтетических цеолитов и наличие входных окон строго определенного размера дают возможность использовать их для разделения веществ с учетом размеров и формы их молекул. Особый интерес цеолиты приобрели для разделения смесей, компоненты которых имеют близкие физико-химические константы (температуры кипения и застывания, плотность и т. п.), так как обычные методы для этой цели оказываются непригодными. Примером разделения веществ, различающихся по критическому диаметру молекул, может служить очистка изопентана, к чистоте которого предъявляются жесткие требования, от примесей н-пентана. [c.113]

    Пример 5.2. Рассчитать среднюю производительность центрифуги ФМД-80 при разделении суспензии, содержащей кристаллические частицы твердой фазы с преобладающим размером более 140 мкм. [c.137]

    Таким образом, структурно-морфологические свойства мембраны, существенные для процесса разделения, в наиболее общей форме характеризуются долей непроницаемой дисперсной фазы и относительным свободным объемом в аморфной фазе. Предельные случаи соответствуют кристаллической структуре и высокоэластичному состоянию полимеров при температуре выше температуры стеклования. [c.72]

    Для ориентации при выборе одной из фильтровальных тканей применительно к осуществлению данного процесса разделения суспензии необходимо иметь сведения о назначении фильтрования (получение осадка, фильтрата или того и другого одновременно), а также по возможности полные данные о свойствах твердых частиц (размер, форма, плотность), жидкости (кислая, щелочная, нейтральная температура, вязкость, плотность), суспензии (соотнощение твердой и жидкой фаз, агрегация частиц, вязкость), осадка (удельное сопротивление, сжимаемость кристаллический, рассыпчатый, пластичный, липкий, слизистый). Кроме того, следует иметь представление о производительности, что поможет определить движущую силу процесса (сила тяжести, вакуум, давление). [c.377]

    Механика развития трещин, часто называемая механикой разрушения, представляет собой раздел механики и физики твердого деформируемого тела, изучающий законы разделения кристаллического или континуального тела на части под действием механических усилий или иных внешних причин. Далее будем иметь в виду континуальное тело, наделенной феноменологическими свойствами, определяемыми экспериментально на стандартных образцах. [c.147]

    Олово имеет три кристаллические модификации. Как их можно получить (механическое разделение, обработка различными реактивами, изменение температуры и давления и т. п.)  [c.56]

    Для разделения смесей индивидуальных углеводородов применяют [37] осадочную хроматографию на кристаллическом карбамиде. [c.204]

    Энергия кристаллической решетки. Важной энергетической характеристикой кристаллов является энергия кристаллической решетки. 7о. измеряемая работой, которую необходимо совершить для разделения кристалла на ионы и удаления их па бесконечно большое расстояние друг от друга. Эту величину обычно относят к молю вещества. [c.152]

    Применение кристаллизации ограничено прежде всего веществами, обладающими кристаллической структурой в твердом виде. При проектировании кристаллизатора важно знать, образуется ли смесь кристаллов и смешанные кристаллы, а также сведения о наличии эвтектики. Разделение становится трудным или вообще невозможным, если происходит неограниченное образование смешанных кристаллов. [c.89]

    При рассмотренных выше режимах испытаний разрушение полимера представляет собой в основном физический процесс. Изменения структуры материала, происходящие в процессе разрушения, сводятся главным образом к изменению степени ориентации или к переходу полимера из аморфного состояния в кристаллическое. Разделение образца на части происходит с сохранением химического состава основной массы макромолекул. Однако при разрушении образца полимера, по-видимому, почти всегда разрушается какая-то доля макромолекул, а в случае полимера с развитой пространственной структурой вообще немыслимо представить себе этот процесс без разрыва химических связей. Разрыв химических связей представляет собой механо-химическую реакцию. Образующиеся при разрыве макрорадикалы быстро реагируют с кислородом воздуха или с другими молекулами. При длительных испытаниях физические и химические процессы уже сравнимы по своей значимости и влиянию на конечный исход—на разрушение материала. Могут быть случаи, когда под воздействием химически активных (агрессивных) сред химические процессы протекают так интенсивно, что разрушение определяется не только, а часто даже не столько механическими факторами, сколько химическими. Наблюдаемые при этом закономерности, естественно, оказываются весьма сложными. [c.149]

    Во многих литературных источниках можно встретить разделение кристаллических образований твердых углеводородов нефти на крупнокристаллическую пластинчатую форму, свойственную парафинам, и мелкокристаллическую игольчатую форму, якобы присущую так называемым церезинам . Некоторые авторы, основываясь на этом разделении, даже определяют различные фракции нефтей как парафинистые или церезинистые и т. д. Однако такое разделение кристаллических форм твердых углеводородов нефти является следствием недоразумения. Игольчатой, церезиновой формы кристаллов твердых углеводородов нефти в действительности не существует. Впечатление игольчатой формы создается нри рассмотрении в поляризационном микроскопе мелких пластинчатых образований при недостаточно высоком увеличении и недостаточно сильном освещении. Возникающая в этих условиях иллюзия игольчатой формы кристаллов обусловливается тем, что плосколежащие кристаллики вследствие крайне малой толщины очень слабо поляризуют свет и могут остаться невидимыми в поле зрения микроскопа. Видимыми же оказываются только кристаллики, стоящие на ребре. Но нри таком положении эти кристаллики просматриваются или проектируются на фотопленку в форме штрихов, напоминающих мелкие иголочки, в результате чего и создается впечатление мнимой игольчатой структуры парафина. [c.62]

    Растворы же продуктов, из которых парафин выделяется в виде компактных не связанных между собой кристаллических образований относительно крупного размера, как остаточного происхождения, так и дистиллятного с добавкой присадок-депрессаторов, можно разделять с достаточно высокой эффективностью вакуумной фильтрацией и центрифугированием. При этом нужно иметь в виду, что вакуумная фпльтрация является более универсальным способом разделения, так как ее можно применить для различных видов сырья с различным кристаллическим строением. [c.134]

    Если, с другой стороны, предполагаемые нримссн обладают температурой плавления, незначительно отличающейся от температуры П1[авле-ния основного углеводорода, и если молекулы примесей и угле]юдорода близки друг к другу, то дробная кристаллизация будет неэффективиа и приведет к потерям вещества. Так как всегда присутствует не жидкая, а твердая, нетекучая фаза, применение колонки для дробн(ЗЙ кристаллизации трудоемко и поэтохму редко применяется. Операция с одной тарелкой , в которой экспериментатор выполняет каждую стадию вручную, крайне утомительна, требует много времени и большой затраты веш ества, если необходимо провести много стадий, как в веществах, трудно разделимых кристаллизацией. Кроме того молекулы наиболее вероятных примесей обычно обладают почти таким же строением, как и моле] улы получаемого углеводорода, поэтому они будут образовывать структуры с близкими кристаллическими решетками, что приводит к образованию твердых растворов. Разделение компонентов твердых растворов обычно [c.501]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Принцип метода определения величины поверхности кристаллического порошка заключается в следующем. Порошок сернокислого свинца взбалтывают с раствором, содержащим радиоактивный свинец. В результате обмена ионов устанавливается обменное равновесие, причем коэффициент разделения можно с достаточной степенью точности принять равным единице. Следя за изменением активности раствора во времени и постоянно переме-шивгя смесь, можно выяснить кинетику реакции обмена. Обычно реакции изотопного обмена подчиняются уравнению первого порядка. Степень обмена X через время t после начала реакции обмена может быть легко найдена из очевидного соотношения [c.381]

    Определение температуры з ьсгывания удобнее всего и точнее производится в приборе Жукова, представляющем собой небольшой Дьюаровский сосуд, в горло которого вставлен термометр, разделенный на 0,1°. От 20 до 30 г парафина расплавляют, на рревают на несколько градусов выше температуры полного расплавления и вливают в сосуд, после чего опускают термометр и наблюдают за падением температуры. Сперва она падает довольно равномерно, затем наблюдается некоторая остановка, соответствующая началу выделения кристаллов, и, наконец, снова идет охлаждение. Температурой плавления считается та, при которой начинают выделятся первые кристаллы. Весь раствор при этом мутнеет и представляет собой кристаллическую кашицу. Надо встряхивать прибор во избежание переохлаждения. [c.331]

    Комплексообразование с тиокарбамидом. Способность тиокарб-амида образовывать комплексы с некоторыми веществами была открыта независимо друг от друга Фаттерли [38, 39] и Англа [40] в середине 40-х годов. Канальные соединения включения тио-карбамида подобны комплексам карбамида с нормальными парафиновыми углеводородами. Однако в то время как карбамид образует комплексы с углеводородами, содержащими углеродную цепь нормального строения, тиокарбамид, в кристаллической решетке которого образуются каналы большого диаметра (наличие большего атома серы), способен к комплексообразованию с изо-парафиновыми и циклическими углеводородами. Методы комплексообразования с карбамидом и тиокарбамидом дополняют друг друга при разделении смесей углеводородов и дают возможность достигать некоторой избирательности. [c.205]

    Реакции образования кристаллических комплексов с органическими акцептор а-м и (тринитробензолом, пикриновой кислотой, пиромеллитовым дпангидридом, 2, 4, 7-тринитрофлуореном или -флуореноном и т. д.) широко используются в анализе конденсированных ароматических углеводородов, но чрезвычайно редко — для разделения ГАС, хотя возможности этого метода очевидны. В качестве примера можно привести работы [101 —103], в которых благодаря применению комплексообразования с тринитробензолом удалось выделить из нефтяного концентрата и затем идентифицировать ишро-кий набор бензо-(Ь)-тиофенов, тиено-(2, 3-Ь)- тиофенов, а также сконцентрировать и отделить не дающие аддуктов алкилтиаин-даны. [c.14]

    При действии на уран избытка Рг образуется гексафторид иРб—бесцветное, легко возгоняющееся кристаллическое вещество (давление его пара достигает 101 кПа при 56,5 °С). Это единственное соединение урана, существующее в газообразном состоянии при низкой температуре, что имеет большое практическое значение, поскольку необходимое для получения атомной энергии разделение изотопов и осуществляют с помощью различных процессов, протекающих в газовой фазе. При растворении в воде ирб гидролизуется, образуя иОгр2 и НР. Тетрафторид ир4 получают действием НР на иОз- С хлором уран образует [c.609]

    Кристаллизация может быть применена прежде всего для веществ, обладающих кристаллической стр)уктурой в твердом виде. При проектировании кристаллизатора важно знать, что образуется чистые кристаллы или смешанные кристаллы, а также наличие эвтектики. Разделение становится трудным или вообще невозможным, если происходит неофнниченное образование смешанных кристаллов. [c.25]


Смотреть страницы где упоминается термин Кристаллическое разделение: [c.408]    [c.286]    [c.50]    [c.127]    [c.132]    [c.202]    [c.131]    [c.329]    [c.38]    [c.90]    [c.383]    [c.103]   
Физико-химия полимеров 1978 (1978) -- [ c.279 , c.282 , c.285 , c.286 ]




ПОИСК







© 2024 chem21.info Реклама на сайте