Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Относительная деформация течения

    Если Продолжить Прямую BD до пересечения с осью ординат, из треугольника A D D можно найти величину относительной деформации течения [c.177]

    В условиях однородного сдвига относительную деформацию течения е еч. можно выразить отношением абсолютной деформации О к толщине образца [c.203]

    Из уравнения (31) следует, что для определения начальной вязкости необходимо измерить относительную деформацию течения е ч. после того, как образец полностью отрелаксировал, [c.211]


    Для проведения экспериментов необходимо создать условия однородного поля, например сдвигового. Такие условия могут быть достигнуты в узком зазоре при большой площади поверхностей измерительной системы. Условия однородности означают, что течение можно описать с помощью трех величин относительной деформации у, скорости деформации, или градиента скорости у и напряжения сдвига Р. [c.175]

    При достаточно большой площади сдвига и узком зазоре напряженное состояние полимерной системы можно считать соответствующим однородному сдвигу. Это означает, что соответствие между полем деформаций (или скоростей деформаций), с одной стороны, и полем напряжений — с другой, описывается с помощью трех величин, зависящих от времени относительной деформации сдвига Y. ее скорости у (или, что то же самое, градиента скорости в зазоре) и напряжения сдвига Р. Чаще всего исследование вязкого течения линейных полимеров проводится при деформации сдвига, реже—-при растяжении или сжатии, так как в этих случаях не удается достичь однородного напряженного состояния при больших напряжениях из-за потери устойчивости процесса течения. [c.155]

    Коэффициент Ё, называемый модулем упругости, характеризует жесткость теда. При напряжениях, превышающих так называемый предел упругости Ри (стр. 260), пропорциональность нарушается происходит либо разрушение структуры, характерное для хрупких тел, предел прочности которых Рт близок к пределу упругости, либо возникают остаточные (пластические) деформации, не исчезающие после снятия нагрузки. Те-л-а, обнаруживающие остаточную деформацию при напряжениях, превышающих предел упругости, называются пластичными телами. Одним из видов остаточной деформации является течение, характерное для вязких жидкостей, при котором величина деформации непрерывно увеличивается при постоянно действующем напряжении. Вязким называется тело, изменяющее форму при любом, сколь угодно малом напряжении (Рй = 0). Идеально вязкие тела — жидкости — подчиняются закону Ньютона, согласно которому градиент скорости сдвига или, иначе говоря, скорость относительной деформации сдвига пропорциональна приложенному напряжению [c.255]

    Последовательно нагружая чашку весов, записывают показания шкалы окулярмикрометра п при различных нагрузках р. Опыт ведут до появления пластического течения, т. е. до той нагрузки, при которой равновесие не устанавливается. Вычисляют относительную деформацию е, как разность между равновесным п и исходным щ показаниями на шкале, деленную на расстояние до стенки. Опыт повторяют с пластинкой, имеющей другую площадь 5. Результаты опыта выражают графически в координатах е — р. Определяют рь (конец прямолинейного участка), рт и вычисляют бз по формуле (4). Вычисляют Е из угла наклона прямой ОА по формуле (3). [c.261]


    Если деформирующую силу не снимать, то через определенное время начнется распад узлов сетки и перемещение связанных сегментов. Перемещение значительного количества свободных и связанных сегментов приведет в конечном счете к перемещению макромолекул относительно друг друга. Так же, как и в низкомолекулярной жидкости, перемещение молекул относительно друг друга обеспечивает необратимую деформацию — течение. Таким образом при длительном действии силы в полимере накапливается необратимая или. как ее часто называют, вязкая деформация. [c.99]

    Как показали эксперименты английского физика П. В. Бриджмена, при нагружении толстостенного сосуда, изготовленного из пластичного металла, возрастающим внутренним давлением в пластическое состояние в первую очередь переходит металл на внутренней поверхности. Далее, по мере нагружения в пластическое состояние переходят другие слои металла. В ходе пластического течения относительные деформации на наружной поверхности постепенно становятся боль- [c.91]

    В качестве характеристики когезионной прочности может быть выбрана одна из величин, определяемых по графической зависимости напряжения от деформации предельная эластичность, условное напряжение при определенном удлинении, условная прочность при растяжении, относительное удлинение, энергия, затраченная на растяжение (площадь под кривой растяжения) и др. На кривой напряжение - деформация можно выделить точки, соответствующие развитию необратимых деформаций течения /у и разрыва /ь. В качестве критерия когезионной прочности чаще всего используют [26] параметр /у или разность /ь /у Если эта разность меньше нуля, то отмечают, что когезионная прочность резиновой смеси практически равна нулю. [c.343]

    Последующая часть относительной деформации ползучести реализуется только со временем и является частично необратимой даже при освобождении из зажимов и выдерживании в термостате в течение длительного времени. Этот участок ползучести изображается прямой с различным наклоном к оси времени, зависящим от типа вулканизационных структур. Образцы, вулканизованные [c.208]

    Вместе с тем пачечная модель встретилась с рядом трудностей, связанных с объяснением явлений высоко-эластичности и вязкого течения полимеров. Так, например, известно, что статистические теории равновесной высокоэластичности и вязкого течения полимеров, основанные на модели индивидуальных статистических клубков со случайными зацеплениями, довольно хорошо согласуются с экспериментом, хотя в них учтены только молекулярные характеристики отдельной цепи или ее фрагментов. В соответствии с этими теориями равновесная упругая сила определяется при данной температуре величиной относительной деформации статистического клубка между зацеплениями (сшивками), а макроскопическая деформация однозначно связана со степенью растяжения гауссовой цепи. Протяженность плато высокоэластичности по температуре при данной величине деформирующей нагрузки точно так же, как и вязкость расплава для линейных полимеров, однозначно связана с молекулярной массой. Энергия активации вязкого течения во многих случаях соответствует диффузии отдельных сегментов в расплаве. В рамках исходной пачечной модели, которая, по существу, предполагает, что деформационные свойства полимера определяются кооперативным поведением ассоциата, а вклад теплового движения отдельных макромолекул и ее сегментов игнорируется, преодолеть указанные противоречия весьма затруднительно. [c.44]

    Процесс отверждения сводится к тому, что раствор нолимера переводится в нетекучее состояние. Это может быть достигнуто в принципе тремя путями 1) понижением температуры раствора, 2) испарением летучего растворителя и 3) застудневанием раствора. Во всех трех методах фиксация формы обусловлена повышением эффективной вязкости системы до такого предела, который обеспечивает при заданной нагрузке на формующуюся нить низкую необратимую деформацию (течение). Например, если необратимая относительная деформация нити составляет несколько процентов в секунду, то можно считать, что при заданных нагрузках произошла фиксация нити. [c.248]

    Аналогичным образом выражается относительная деформация вязкого течения [c.402]

    Существенно, что при расчете высокоэластической деформаций величина I относится не к начальной длине образца 1о, а. в. величине т. е. к той длине, которую образец приобретает в результате вязкого течения, происходившего параллельно с развитием высокоэластической деформации. Указанный выбор способа определения высокоэластической деформации обеспечивает выполнение естественного условия равенства полной относительной деформации сумме необратимой и высокоэластической составляющих деформации [c.402]

    В качестве объекта исследования был выбран полиизобутилен марки П-20 молекулярный вес по Штаудингеру 2-10, по Флори —1-10 (характеристическая вязкость при 30° в бензоле 0,375 и в циклогексане 0,843). Эксперименты проводились на ротационном эластовискозиметре РЭВ-1 [5]. Прибор позволяет получать зависимость напряжений т от продолжительности деформирования вследствие чрезвычайно высокой жесткости динамометрического устройства эта зависимость эквивалентна зависимости напряжений от относительной деформации у нри постоянной скорости деформации у. Типичные графики зависимости т (у) представлены на рис. 1. Наблюдаются зависимости т (7) двух различных типов до некоторой скорости деформации зависимость т (у) монотонна, нри более высоких 7 на кривой т(у) появляются максимумы. На рис. 2 показаны зависимости экстремальных значений напряжений Тщ и напряжений после выхода на режим установившегося течения от скорости деформации. Скорость деформации существенно влияет на величину максимума. Более того, само существование максимума обнаруживается экспериментально лишь выше некоторой скорости деформации, зависящей от температуры. Как видно из рис. 2, экспериментально наличие максимума на кривых т (у) обнаруживается лишь при таких скоростях деформации, при которых наблюдается уже значительная [c.323]


    Деформация реального каучука никогда не является чисто высокоэластической. Наряду с выпрямлением цепей и изменением их формы происходит также относительное перемещение цепей — течение, приводящее к остаточным деформациям. Поэтому общее изменение длины цепей при деформации растяжения или сжатия образца каучука всегда является результатом как высокоэластической деформации, так и деформации течения. В реальном каучуке очень трудно разграничить эти два вида деформации (стр. 207). [c.164]

    Релаксация деформации. Величина деформации зависит от величины приложенного напряжения. Предположим, что к образцу каучука приложено постоянное напряжение, величина которого значительно меньше разрывного напряжения (глава XI). Если процессы течения при этом не происходят, то под влиянием приложенного напряжения образец будет постепенно удлиняться до достижения определенной длины, не изменяющейся больше со временем. Относительная деформация, величина которой не изменяется во времени, называется равновесной высокоэластической деформацией и обозначается еэл. . Равновесная деформация всегда больше любой деформации, развившейся за данный промежуток временив (еэл. > 3. . <)  [c.165]

    Для аморфных линейных полимеров высокого молекулярного веса термомеханическая кривая имеет три участка (рис. 64), соответствующих трем физическим состояниям. Первый участок (/) соответствует стеклообразному состоянию, для которого характерны малые деформации при небольших значениях напряжения, второй (//)—высокоэластическому состоянию, характеризующе.муся большими обратимыми деформациями. На эти деформации накладывается деформация течения, которая с повышением температуры увеличивается. При достаточно высоких температурах относительное перемещение цепей как единого целого настолько облегчается, что наступает так называемое истинное течение полимера. [c.189]

    При достаточно высоких температурах, превышающих некоторое условное значение, называемое часто температурой текучести 7т, интенсивность сегментального движения в аморфных полимерах настолько высока, что не связанные в сетку макромолекулы способны под действием внешних механических нагрузок к значительным перемещениям друг относительно друга. Физическое со--етояние полимера, соответствующее таким температурам, называют вязкотекучим, поскольку для него характерны большие необратимые деформации (течение). [c.39]

    Исследовали деформационные свойства глин и известняка без доступа воздуха. При этом деформация глин и известняка носила одинаковый характер. В начале опыта (3—5 мин) деформация имела относительно большую величину (1,5—2,0%), затухая в течение первого часа. Дальнейший прирост относительной деформации за период свыше 450 ч оказался весьма малым (менее 0,5%), и образцы не разрушались. Ползучести образцов также не было обнаружено. Это показывает, что глины в объемно-да-пряженном состоянии ведут себя так же, как и известняк, и, следовательно, различие в поведении глинистых пород, подверженных обвалам, и других необваливающихся горных пород при бу- [c.90]

    Внутри образца обеспечивалась постоянная циркуляция воды. Деформация известняка увеличилась незначительно, тогда как разрушение глин произошло быстро (1—3 ч). Разрушение глин произошло, как и во втором опыте, нри относительной деформации 7—9%. Причиной разрушения образцов глин, по мнению автора, является адсорбционное понижение твердости. Известняк также испытывает действие адсорбционного понижения твердости, но в небольшой области (вокруг внутреннего отверстия), соприкасающейся с па])ами воды или с водой. Эта область по отношению к объему образца невелика, что обеспечивает неизменность характера двформав,ии известняка в указанных условиях. В образцах глин эта область велика и постепенно с течением времени распространяется на весь объем образцов. При этом силы сцепления между частицами глин экранируются, что, как известно, может привести и при отсутствии нагрузки к самопроизвольному диспергированию глин, а при наличии нагрузки — к значительным деформациям. [c.91]

    При еустановившемся течении зависимость продольной вязкости от относительной деформации определяется скоростью деформации (рис. V. 7). На начальном этапе развития (область А) вязкость пропорциональна деформации, что было показано Каргиным и Соголовой на примере высокомолекулярного полиизобутилена . Область А будет тем шире, чем выше скорость деформации. Физический смысл нарушения пропорциональности связан с протеканием при деформировании конкурирующих процессов ориентации, обусловливающей рост X, и разрушения надмолекулярной структуры, приводящей к падению X (см. гл. VI). Для легкости сопоставления данные зависимости сдвиговой вязкости, например от скоро- сти деформации, представляются в приведенных координатах (рис. V. 8). Таким образом удается уложить на одну обоб-щенную кривую данные для вязкосги при g, различных температурах и даже для различных полимеров. Независимость хода  [c.179]

    Дес юрмация реального каучука никогда не является чист сысокоэластической, Наряду с выпрямлением цепей н изменение IIX форМЬ Происходит также относительное перемещение цепей-течение, приводящее к остаточным деформациям. Поэтому обще изменение длины цепей при деформации растяжения или сжати образца каучука всегда являстся результатом как вьгсокоэяастиче ской деформации, так и деформации течения. [c.166]

    К числу основных признаков вязкотекучего состояния относится его реакция па действие напряжения. Под влиянием механических сил у полимеров в вязкотекучем состоянии развивается деформация течения Течение — это необратимое перемещение молекул относительно друг друга под влиянием приложенного извне усилия F, при этом в веществе возникают силы трения Ft. препятствующие течению, т. е. Г — —Ft. Внутреннее трение полимеров имеет в основном энергетическую природу, так как связано с преодолением сил взаимодействия между плотно упакованными макромолекулами Поэтому сетчатые полимеры с пространственной структурой, образованной химическими связями, в вязкотекучее состояние не переходят, так как эти связи препятствуют свободному перемещению макромолекул, необходимому для течения, Течение этих систем возможно лищь при pa3pyinetiHH поперечных связей (химическое течение) [c.253]

    Скорость развития эластической деформации. Предполож что к образцу полимера приложено постоянное напряжение, ее. чина которого значительно меньше разрывного напряжения (г. ва IX). Если Процессы течения при этом не происходят, то г влиянием Приложенного напряжения образец будет постепе удлиняться до достижения определенной длины, не изменяюще/ больше со временем. Относительная деформация, величина ко рой не изменяется во време 1И, называется равновесной высокоэ. стической деформацией и обозначается Еэл, Равновесная деф мацня всегда больше любой деформации, развившейся за данн промежуток времени <(еэя,со>еэл, ). [c.168]

    В обшем случае относительная деформация полимера е, складывается нз упругой деформации Вупр (которая определяе-изыенением расстояний между атомами в цепи), высокоэласти ской деформации Сал, < и деформации течения бтеч  [c.170]

    Op, измеренного стандартным способом. Решающим в этом случае оказывается время, в течение которого полимерный образец находится под нагрузкой. Если это время достаточно велико, то разрушение в ряде случаев может произойти при напряжениях, много меньших Ор. Время от момента нагружения образца до его разрушения называется долговечностью материала. Долговечность т является важной характеристикой прочностп. Обычно при экспериментальном изучении долговечности напряжение поддерживается постоянным (а = onst). Если это условие не выполняется, то временная зависимость прочности при статической нагрузке характеризует статическую усталость. Временная зависимость прочности при динамической (чаще всего периодической) нагрузке характеризует динамическую усталость. Поведение материала в момент разрушения описывают величиной максимальной относительной деформации 8р, имеющей место при разрыве. Величина относительной деформации ер зависит от вида деформации, скорости деформации и температуры и в значительной степени от структуры и физических свойств материала. При хрупком разрушении ер составляет сотые доли процента. При разрушении полимера, находящегося в высокоэластическом состоянии, ер может достигать нескольких сотен процентов. [c.285]

    Захаров [24 ] с помощью радиоактивных изотопов изучал диффузию полиизопрена с молекулярной массой (8,6-ь41) 10 , который наносили в виде поверхностного покрытия на однооснорастянутые образцы натурального каучука (НК). Сразу после растяжения образца зависимость коэффициента диффузии от относительного удлинения образца имеет ярко выраженный минимум. Предварительная выдержка образцов НК в растянутом состоянии в течение суток приводит к монотонному уменьшению О в исследованных пределах деформации. Увеличение молекулярной массы полиизопрена и снижение температуры от 91 до 45 °С вызывает значительное уменьшение ), при этом характер зависимости коэффициента диффузии от относительной деформации образца сохраняется. [c.71]

    Экспериментальные результаты можно сформулировать следуюш им образом. Если течение останавливалось до того, как достигался максимум напряжений т , то при повторном деформировании вид деформационной характеристики не изменялся. Если течение останавливалось после прохождения максимума кривой т (у), то при повторном деформировании наблюдалось снижение величины т , тем большее, чем при больших деформациях останавливалось течение. При этом, если деформирование прекращалось после выхода на стационарный режим течения, то при повторном деформировании максимум на кривой вообще не наблюдался. Во всех исследованных случаях напряжения в режиме установившегося течения (определяющие величину эффективной вязкости) оставались неизменньши и не снижались как бы долго (до нескольких часов) ни продолжалось деформирование. Если принять величину прочности структуры свежего образца за 100%, то изменение этой величины при повторном деформировании после прекращения течения при различной относительной деформации характеризует степень относительного разрушения структуры. Показательной в этом отношении является зависимость (т т — Т5)/(Тт — т ) от у, представленная на рис. 3. Здесь и Тт — напряжения, соответствующие максимуму кривой для свежего и предварительно деформированного до величины у полимера. На том же рисунке нанесена зависимость (т — тз)/(т , —- Та) от у, полученная в опытах со свежим образцом и показывающая относительное изменение напряжений после прохон дения через предел сдвиговой прочности. Как видно из данных рис. 3, наблюдается близкое соответствие между двумя построенными графиками. Разрушение вторичной структуры полимера при его деформировании начинается и протекает наиболее интенсивно в области максимума зависимости т (у). [c.325]

    Кривая 1 на рис. 62 является, таким образом, простейшей кривой течения. Получить ее можно следующим образом. Представим себе некоторый объем жидкости, заключенный мел<ду двумя параллельными плоскостями (рис. 63), например каплю глицерина между стеклянными пластинками. Пусть на верхнюю пластинку действует сила Р тогда на каждый квадратный метр пластинки площадью А м действует напряжение сдвига т Н/м . Под действием напряжения сдвига т пластинка сместится на расстояние Д/. Интенсивность сдвига зависит, конечно, и от расстояния между пластинками. Если Д/=1 см, то при зазоре между пластинами /о=1 м сдвиг вообще трудно заметить, а при зазоре /о=1 мм деформация сдвига окажется огромной. Поэтому относительная деформация сдвига у = А///о, а скорость деформации сдвига ь = (1у1й1 имеет размерность с , как отношение к единице времени безразмерной величины у- Увеличивая напряжение сдвига и измеряя его скорость, можно построить кривую 1 рис. 63. Такой тип кривой течения характерен для полимеров с узким молекулярно-массовым распределением и при переработке полимеров встречается сравнительно редко. [c.127]

    Физический смысл критерия потери устойчивости, представляемого как (у0), с общих позиций был рассмотрен в работах [8 д—10 д]. Принципиальный подход, на котором основываются вти исследования, связан с трактовкой потери возможности установившегося сдвигового течения как следствия перехода из текучего в высокоэластическое состояние. Так, если представить модель полимера в виде системы цепей, связанных временно существующими узлами флук-туационной сетки с некоторым распределением времен жизни этих узлов, то,, очевидно, можно выбрать такую достаточно большую скорость, по отношению к которой все узлы в сетке окажутся квазистабильными. Это означает, что при такой (и тем более при большей) скорости деформации течение, которое должно быть неизбежно связано с разрушением флуктуационных связей и проскальзыванием цепей друг относительно друга в узлах, происходить не сможет, и полимер будет вести себя подобно вулканизованному каучуку с его сеткой стабильных хими ческих связей. Из этой модели наглядно следует что критические условия потери текучести должны определяться некоторой характерной величиной параметра (70). [c.279]

    Зависимость общей относительной деформации от времени при постоянном напряжении выражается кривой, представленной на рис. 78. На этой кривой участок OABD соответствует изменению относительной дефор.мации при нагружении, а участок D F — при разгружении. Из рисунка видно, что после приложения напряжения деформация развивается мгновенно до величины О А, затем развитие деформации во времени выражается выпуклой (по отношению к оси ординат) кривой АВ, переходящей в прямую BD. Участок ОА соответствует небольшой по величине деформации ео, которая формально подчиняется закону Гука и называется условно-упругой деформацией. Участок АВ характеризует одновременно развивающиеся во времени высокозластическую деформацию и деформацию течения. В главе VII было показано, что при постоянном напряжении высокоэластическая деформация развивается во времени, достигая (равнавеаной величины. Если за отрезок времени [c.208]


Смотреть страницы где упоминается термин Относительная деформация течения: [c.177]    [c.177]    [c.177]    [c.209]    [c.154]    [c.267]    [c.119]    [c.168]    [c.176]    [c.198]    [c.254]    [c.177]    [c.176]    [c.512]    [c.127]    [c.206]    [c.208]   
Физико-химия полимеров 1978 (1978) -- [ c.154 ]




ПОИСК







© 2025 chem21.info Реклама на сайте