Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористость метод плотностей

    Контроль упругих свойств керамики. Характерным дефектом керамики и металлокерамики является пористость. Повышенная пористость снижает плотность, упругие свойства и прочность материала, поэтому ее контролируют неразрушающими методами. [c.807]

    Метод изгиба, плотность 2700—2800 кг/м . 2 Плотность 1800 кт/мК a 2000 кг/ыК 2200 кг/мз. 5 2400 кг/мз. 2600 кг/м . 2800 кг/м . 3000 кг/мз. 9 Пористость 3—7%. Пористость 11%. Плотность 3150 кг/мЗ. " Пористость 3—7%. Пористость 2%, плотность 3510 кг/мз. з, Монокристалл, мето- [c.194]


    Качество керамики проверялось определением кажущейся плотности и открытой пористости методом гидростатического взвешивания. Для дальнейших исследований использовались образцы с открытой пористостью 1%. [c.147]

    Величина пористости определяет плотность пленки, которая меняется обратно пропорционально изменению пористости. Истинная поверхность окисных покрытий благодаря наличию пор значительно превосходит видимую (габаритную) поверхность образца. Приближенные расчеты показывают, что даже у сравнительно тонких анодных пленок (4—5 мк), полученных по обычному методу анодирования в серной кислоте, истинная поверхность в 20— 25 раз превосходит видимую поверхность. Это обеспечивает повышенные адсорбционные свойства окисных пленок, например, их способность к наполнению (уплотнению) маслом (что очень важно при работе покрытий на износ истиранием), лаком (для усиления электроизоляционных свойств), различными пассиваторами (для усиления противокоррозионных защитных свойств) и их высокую адгезионную способность по отношению к лакокрасочным покрытиям. [c.74]

    Фильтрация через пористые материалы — один из наиболее совершенных методов очистки газов от твердых частиц. Газовый поток проходит через пористый материал различной плотноста и толшины, в котором задерживается основная масса пыли. Для очистки газов применяют два вида промышленных фильтров тканевые и зернистые. [c.45]

    Фильтрование [5,1, 5,24, 5,27, 5,30, 5,36, 5,51, 5.60, 5,67]. Метод основан на разделении систем Г — Т, Г — Ж, Ж — Т, Ж1 — Ж2 с помощью пористого материала (ткань, бумага, сетки, гравий, песок, металлокерамика, полимерные пленки и т. д.) и применяется для отделения взвешенных частиц на поверхности фильтрующих материалов под действием сил прилипания. Степень извлечения зависит от гранулометрического состава выделяемых частиц, их концентрации и свойств (гидрофобность, плотность, структура, дисперсность и т. д.), а также характеристики дисперсной среды и устанавливается чаще всего опытным путем. [c.472]

    Значение пористости катализаторов находят расчетом. Для этого можно воспользоваться, иапример, результатами определения кажущейся плотности и удельного объема пор, методы определения которых описаны в предыдущих разделах. [c.95]

    Процессы мокрой обработки предопределяют адсорбционную способность и пористую структуру силикагелей. Они включают стадии синерезиса, кислотной обработки и обезвоживания. Большое влияние на структуру силикагелей оказывают условия созревания гидрогелей. Одним из методов регулирования структуры силикагелей является изменение глубины созревания их гидрогелей. Гидрогели, не претерпевшие синерезиса, образуют более тонкую структуру, чем вполне созревшие. С увеличением степени созревания гидрогелей, сформованных в нейтральной среде, наблюдается повышение адсорбционной снособности по бензолу. Насыпная плотность при этом уменьшается, но резко увеличиваются пористость и объем пор. В соответствии с этим сформованный гидрогель выдерживают в промывочном чане 1,5—2 ч в тех условиях, в которых он был сформован, т. е. в нейтральной формовочной воде. В течение этого времени происходит дальнейшее уплотнение мицелл (вторичная коагуляция) с образованием крупных агрегатов, сопровождающееся сокращением скелета гидрогеля и выделением из него интермицеллярной жидкости. От вторичной коагуляции зависят размеры образующихся агрегатов. [c.117]


    Гидродинамический метод включает в себя два этапа на первом снимается зависимость расхода от давления, а на втором зависимости плотность пор — радиус пор, площадь пор — радиус пор, расход—радиус пор. Затем рассчитывается общее число пор, эффективная и общая пористость. [c.104]

    Выводы, сделанные на основе исследования плотности кокса этим методом, не противоречат основным результатам рентгеноструктурного анализа, а также данным, полученным новыми современными методами исследования тонкой структуры коксов. Это объясняется тем, что величина и характер пористости коксов из различных нефтепродуктов, так же как и величина плотности, тесно связаны с природой исходного сырья, механизмом процесса коксования и последующими изменениями структуры углеродистого вещества при тепловом воздействии на кокс. Уже исследования текстуры нефтяных коксов, выполненные нами, показывают, что пространственное распределение плотной массы и микропор (при увеличении в 60—200 раз) довольно четко отражает различия в природе исходного сырья для коксования. [c.231]

    При измерении кажущейся плотности кокса необходимо решить вопрос о методике ее определения следует ли в общей пористости учитывать трещины в куске величиной в несколько миллиметров Следует ли их включать в общий объем куска при выбранном методе определения или нет  [c.150]

    Для получения представительных статистических данных требуется исследовать очень большое количество таких срезов. Приводим в качестве примера результаты определений с применением этих методов. На рис. 34 показана пористость, измеренная путем вдавливания ртути в целый ряд кусков кокса, полученных из одной и той же шихты, но при различных плотностях загрузки. [c.152]

    По экспериментальным данным, приведенным в работе [11] была рассчитана характеристическая энергия адсорбции криптона на цеолите ЫаХ Е = 7740 Дж/моль и определена величина предельной адсорбции для различных температур. Теплота парообразования криптона ДЯо = 9018 Дж/моль. По формулам (2.1.8), (2.1.13) определяем критическую температуру адсорбированного криптона 7 р = 389 К и критическую плотность р р= 1240 кг/м . На рис. 2.4 приведена графическая иллюстрация, проведенных нами расчетов зависимости плотности адсорбированной фазы от температуры. Сравнение рассчитанной плотности адсорбированного криптона с экспериментальными результатами не оставляет сомнения в преимуществе разработанного метода. Адекватность описания экспериментальных данных связана, очевидно, с учетом при расчете не только основных физических свойств объемной фазы, но и характеристических характеристик адсорбции, а значит, и пористой структуры адсорбента. [c.33]

    Существует множество методов определения объёмной плотности зерен кокса, в основу которых положен общий принцип измерения суммарного объёма зерен навески по количеству замещенной пикнометрической жидкости. Отношение массы навески к суммарному объёму зерен и составляет кажущуюся плотность. Пористость зерен легко рассчитывается по формуле  [c.34]

    Совершенствование сушествующих й внедрение новых методов разработки залежей нефти И газа требуют глубокого изучения механизма осуществляемых процессов. Жидкости и газы, насыщающие пористую среду нефтегазоносных пластов, представляют собой, многокомпонентную смесь углеводородов. Кроме углеводородных компонентов в пористой среде имеются также неуглеводородные компоненты, растворимые или практически нерастворимые в углеводородных смесях (например, вода) В результате отклонения системы от термодинамического равновесия, вызванного изменением пластовых условий, могут возникать сложные движения двух-трехфазных многокомпонентных систем в пористой среде, при которых скорости движения отдельных фаз, их плотность и вязкость меняются во времени и в пространстве. Эти движения характеризуются переходом отдельных компонентов из газовой фазы в жидкую, различием фазовых скоростей, диффузией компонентов, составляющих фазы и др. Такой характер фильтрационных течений возникает в пористой среде при движении газированной жидкости и ее вытеснении из пласта водой и газом, при фильтрации газоконденсатных систем, вытеснении нефти из пласта газом высокого давления или обогащенными газами, при взаиморастворимом вытеснении жидкостей и других процессах.,  [c.3]

    На рис. 4.3 изображен элемент с электродными пространствами, разделенными пористым стеклянным диском О. Предположим, что электрод В поляризован током, идущим от электрода О. Капилляр Ь (иногда называемый капилляром Луггина) электрода сравнения Я (или солевого мостика между электродами Я и В) расположен вблизи от поверхности В, что позволяет уменьшить ошибку измерения потенциала, вызванную омическим падением напряжения в электролите. Э. д. с. элемента В—определяют для каждого значения тока, измеряемого амперметром А с периодичностью достаточной для установления стабильного состояния. Поляризацию электрода В (катода или анода) измеряют в вольтах по отношению к электроду сравнения 7 при различных значениях плотности тока. Как правило, значения потенциалов приводят по стандартной водородной шкале. Этот метод назы- [c.49]


    Основными параметрами, количественно характеризующими защитные свойства покрытий, приняты следующие электрические величины плотность защитного тока, разность потенциалов труба — земля и переходное сопротивление. Некоторые другие показатели < остояния изоляционного покрытия, такие, как, например, сквозная пористость защитного слоя, могут быть получены из указанных параметров. Для определения этих параметров разработаны соответствующие методы. Каждый метод имеет свои положительные и отрицательные стороны. Так, при оценке по плотности тока определяется не истинная плотность тока по длине образца или участка, а усредненная. В методике оценки по обнажению поверхности металла много не всегда правомерных допущений. При оценке разности потенциалов в случае небольших сквозных повреждений, когда они распределены равномерно вдоль трубопровода, не улавливается резкое изменение хода кривой разности потенциалов. [c.63]

    В насыпных моделях пласта объем порового пространства и пористость определялись весовым методом, остаточная вода создавалась вытеснением воды нефтью. Степень изменения насыщенности нефтью и водой контролировалась весовым и объемным методами. В исследованиях использовалась дегазированная пластовая нефть. В качестве вытесняющей жидкости - сточная промысловая вода плотностью 1024 кг/м модель пластовой воды плотностью 1100 кг/м Арланского месторождения. Вытеснение нефти водными растворами разных концентраций ПФР производилось как при начальной, так и при остаточной нефтенасыщенности с постоянной линейной скоростью. Коэффициент вытеснения нефти и остаточная нефтенасыщенность определялись объемным методом. При вытеснении нефти водой и растворами ПФР отбирались пробы для определения содержания металлопорфириновых комплексов нефти и адсорбции, измерения концентрации ПФР. Концентрация ЛПЭ-ПВ измерялась спектрофотометрическим методом. Для оценки нефтевытесняющей способности водных растворов ПФР в модель пласта подавались малообъемные оторочки, а также производилось сплошное закачивание реагента. Результаты исследований представлены в табл.46 и 47. [c.166]

    Для определения пористости методом хлорного травления пластины кремния должны быть полированы с двух сторон для того, чтобы слой окисла равнол ерно покрывал обе повер хности. Держатель с пластинами помещают в печь, разогревают ее до 1000°С, затем закрывают реактор шлифом 3 и, открывая кран делительной воронки, регулируют поток хлора таким образом, чтобы через склянку Тищенко с серной кислотой проходило 1—2 пузырька в минуту. Травление проводят в течение 15 мин. Затем прекращают подачу хлора и извлекают пластину из реактора. Образец сначала осматривают, а затем исследуют на металлографическом микроскопе. Подсчитывают число растравленных отверстий в окисной пленке в поле зрения окуляра, й затем, определив площадь поля зрения при помощи объект-микрометра, рассчитывают плотность сквозных пор (см" ) в окисле по формуле N = п/5, где п — количество пор в поле зрения окуляра, 5 — площадь поля зрения, см . [c.135]

    Таким образом, из изложенного выше следует, что понятия пористости и плотности упаковки неадекватны. Пористость практически всегда отражает щ стоты, имеющие размеры больше люлекулярных, т.е. достаточно крупные пустоты. Что касается плотности упаковки самих макромолс1 л, то о ней можно судить, рассматривая только непористую часть образца. Как было отмечено выше, для анализа микропористой структуры полимеров предпочтительно применение методов аннигиляции позитронов [.3, 48, 110, 123, 134, 140, 155, 164, 187, 211], с помощью которых можно получить качественную и количе-ственну ю информацию о характеристиках субмикропор (2—15 A) в полимерах. [c.61]

    Метод горячей вулканизации заключается в том, что обувную заготовку (верх обуви) после ее обычного от-формования снимают с затяжной колодки и надевают на специальную металлическую колодку, укрепленную в пресс-форме с контурами и профилем подошвы и каблука. В Пресс-форму закладывают невулканизирован-ную резиновую смесь и плотно прижимают металлическую колодку с заготовкой к пресс-форме. Под воздействием температуры и давления в присутствии клея происходят формование, вулканизация и крепление к верху обуви подошвы и каблука. В зависимости от конструкции прессов, состава резиновой смеси и режима горячей вулканизации можно получить резиновый низ обуви монолитной или пористой структуры и с различными эксплуатационными свойствами. Горячая вулканизация с целью получения резинового низа монолитной структуры (плотность 1,2 г/см , и более) применяется для изготовления спецобуви тяжелого типа, а с целью получения резинового низа пористой структуры (плотность 0,6— 1,0 г/см )—для производства облегченной спецобуви. Обувь, изготовленная методом горячей вулканизации, отличается хорошими эксплуатационными свойствами надежностью прикрепления низа обуви, непромокаемо-стью, небольшой массой (при пористой структуре резины) и хорошим внешним видом. [c.72]

    Желатиновые мембраны фирмы Сарториус имеют толщину 250 мкм и диаметр 50 мм. Они выпускаются стерилизованными окисью этилена, хотя для их стерилизации можно использовать также гамма- или ультрафиолетовое излучение. По своей внутренней структуре они аналогичны обычным мембранным фильтрам с 80 %-ной пористостью и плотностью пор около 10 см-2. Основной размер пор, определенный методом продавливания ртути, составляет 0,3 мкм, но благодаря силам электростатического притяжения эти мембраны улавливают бактерии много меньших размеров. Согласно литературным данным, желатинные мембраны задерживают 99,98— 99,99 % жизнеспособных бактерий. Коллер и Роттер [129] для подсчета частиц в воздухе использовали счетчик до и после пропускания потока воздуха через желатиновые мембраны и показали, что задерживается 99,954 % частиц диаметром 0,5— 1,0 мкм и 99,967% частиц диаметром 1,6—3,0 мкм. Шуерманн [181] показал, что воздух можно пропускать через эти мем- [c.401]

    Мартенсен В. Н., Аюкаев Р. И., Стрелков А. К- и др. Дробленый керамзит— новый фильтрующий материал для водоочистных фильтров. Куйбышев, 1976. 168 г. ГОСТ 2409—67. Материалы и изделия огнеупорные. Метод определения водопоглощения, кажущейся плотности, открытой ji o5 щей пористости. [c.80]

    Известно, что геометрическая структура и деформационное поведение сыпучего материала находятся в тесной взаимосвязи. Достаточно упомянуть о качествепно различном, в зависимости от начальной плотности, изменении объема сыпучего тела при сдвиговой деформации [1]. В связи с задачами механики грунтов в изучении механических свойств сыпучего материала достигнут значительный прогресс. Вместе с тем теоретические представления о происходящих при деформации преобразованиях структуры упаковки частиц развиты сравнительно слабо. Анализ в основном ограничивается изучением характера изменения объема или пористости. Это объясняется фактическим отсутствием эксиериментальпых методов исследования топких структурных характеристик зернистого слоя, подобных, к примеру, рептгено-структурному методу исследования строения вещества. [c.15]

    Износоустойчивость зерен, предназначенных для эксплуатации в кипящем слое (см. стр. 100), обеспечивается в первую очередь прочностью материала зерен, малой плотностью, их сфероидальностью, макрогладкой поверхностью зерен, малой фрикционной способностью материала и особенно малыми размерами зерен, так как сила их удара друг о друга пропорциональна массам. Эти качества наиболее легко достигаются при применении плавленых алюмосили-катных и металлических катализаторов (например железа). Окисные и солевые катализаторы необходимо, как правило, наносить на алюмосиликатпые, алюмогелевые, силикагелевые и другие прочные пористые зерна сфероидальной формы. Применимы и другие методы изготовления контактных масс, которые будут рассмотрены ниже. [c.127]

    О. Дифференциальные формулировки. В нерассеивающей среде с заданным распределением температуры, когда известна функция источника, уравнение переноса легко интегрируется вдоль иути и находится /, и далее, иите-грируя / по углам 0 и ф или (при необходимости) по у и Р, на.ходится плотность теплового потока. При необходимости можно провести численное интегрирование или воспользоваться, если это удается, специальными функциями типа интегральной показательной функции. Когда рассеяние становится заметным или радиационный нагрев или охлаждение приводят к изменению температуры, определяемой из общего уравнения энергии, функция источника неизвестна и решение можно получить методом итераций. Этот метод основан на оценке функции источника с использованием решения уравнения переноса для /, затем уточне)шем оценки функции источника путем интегрирования / по углу 4я и последующем повторении этих операций. Такая процедура сходится для альбедо, меньших единицы, и для среды с известным распределением температуры. Альтернативным и более удобным вариантом может служить дифференциальная формулировка. Некоторые аспекты различных дифференциальных методов кратко обсуждались. здесь, когда они использовались в классических инженерных задачах радиационного переноса теплоты через слой пористого или волокнистого изолирующего материала. [c.504]

    Разделение неоднородных смесей на их компоненты осуществляется методами, основанными либо на разности плотностей этих компонентов (фаз), либо иа задержании одного из них (твердой фазы) пористой перегородкой, пропускающей лишъ сплошную фазу (жидкость, газ). Первые из этих методов называют осаждением, или отстаиванием, вторые—фильтрованием. [c.36]

    На практике оптимальную глубину прокаливания определяют более простыми методами, которые косвенно характеризуют степень унорядочеиности кокса, — по изменению пористости, УЭС, удельной поверхностп, плотности, по расходу связующего материала и др. Наиболее точно установить оптимальную глубину облагораживания удается, по-видимому, при комплексном нсиользова-пии этих показателей. [c.207]

    При адсорбции главную роль ифают ионное и электростатическое взаимодействие носителя и поверхности клеток, поглощение пористой поверхностью, капиллярные явления. Однако сродство того или другого микроорганизма к адсорбенту во многих случа)Гх непредсказуемо. Сам метод технологичск. Суспензия клеток смешивается с носителем, перемешивается несколько часов на качалке, лучше выдержать ее затем при 4°С несколько часов, а затем тщательно отмыть носитель от невключившихся клеток. Положительными качествами метода адсорбции являются следующие относительная дешевизна носителей, отсутствие диффузионных затруднений и токсичного воздействия на микроорганизмы. Преимуществом неорганических адсорбентов, кроме того, можно признать устойчивость к воздействию микроорганизмов, стабильность объема при действии давлений и потока субстрата, высокую плотность. [c.164]

    Нами разработана технология получения КМ системы ТРГ-пироуглерод, исследованы прочностные и деформационные свойства КМ с разной плотностью каркасов, в исходном состоянии и после термического воздействия, проведены их структурные исследования. Образцами пористых каркасов для насыщения пироуглеродом служили кольца (диаметром 36/24 мм и высотой 15-17 мм), полученные из ТРГ методом одностороннего прессования Насыщение пироуглеродом образцов проводили по разработанной в ННЦ ХФТИ технологии с использованием радиально движущейся зоны пиролиза. [c.71]

    Увеличение вязкости закачиваемой в пласт воды ограничено условиями залегания и строением коллекторов и возможно лишь до величин, немногим больших вязкости нефти, из-за возрастания давления ильтрации. Повышение плотности водных растворов диспергирс анием утяжеленных веществ также ограничено. Наряду с изменением перечисленных факторой наиболее приемлемым и практически уществимым методом ослабления и устранения поверхностных сил, удерживающих нефть в пористой среде, является снижение межфазного натяжения на границе раздела с нефтью до предельно низких величин. [c.8]

    Имеются данные, свидетельствующие об определенной корреляции между термодинамической работой адгезии и ее механическими параметрами, определяемыми методом отрыва. В [2-143] рассчитаны корреляционные связи между углом смачивания при 200 С и пределом прочности при сжатии, плотностью и пористостью электродов Зодерберга. Эти коэффициенты корреляции равны -(0,944-0,70) -0,78 -0,87 соответственно. [c.149]


Смотреть страницы где упоминается термин Пористость метод плотностей: [c.31]    [c.150]    [c.203]    [c.625]    [c.84]    [c.314]    [c.314]    [c.12]    [c.186]    [c.73]    [c.201]    [c.80]    [c.81]    [c.83]    [c.97]    [c.112]    [c.28]    [c.71]    [c.189]   
Физико-химия полимеров 1978 (1978) -- [ c.499 , c.500 ]




ПОИСК





Смотрите так же термины и статьи:

Метод плотностей



© 2025 chem21.info Реклама на сайте