Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металл оксиды, основность

    Оксиды и гидроксиды магния и щелочноземельных металлов. Их основные свойства. Соли этих элементов, термическое разложение, растворимость в воде. Окраска пламени. Амфотерность бериллия, его оксида и гидроксида. Гидролиз солей бериллия и магния. [c.170]

    Фазовый анализ. В отличие от элементного анализа цель фазового анализа — разделение и анализ отдельных фаз гетерогенной системы, например железной или марганцевой руды, сплава, шлака и др. Основной областью применения фазового анализа является изучение распределения легирующих элементов в многофазных сплавах, определение зависимости количества, дисперсности и состава фаз от термической и механической обработки, вариаций химического состава, влияния различных добавок на свойства вещества. С помощью фазового анализа определяют также количество и состав неметаллических включений в металлах (оксидов, сульфидов, нитридов, карбидов), выделяют фазы в свободном состоянии. [c.824]


    Почти все соединения щелочных металлов растворимы в воде. Ионы щелочных металлов образуют бесцветные растворы. Растворы становятся окрашенными, когда электрон в атоме возбуждается с одного энергетического уровня на другой, причем разница энергий этих уровней соответствует видимой части спектра. У ионов щелочных металлов нет свободных электронов, которые могут возбуждаться светом с энергией, соответствующей видимой части спектра. Оксиды щелочных металлов обладают основными свойствами, и все они реагируют с водой, образуя основные гидроксиды, растворимые в воде и полностью диссоциирующие в ней. [c.434]

    Состав простых нормальных оксидов определяется окислительным числом электроположительного элемента и выражается формулами ЭгО (нечетное окислительное число п) или Э0 /2 (четное окислительное число). Свойства простых оксидов определяются характером связанного с кислородом элемента. Оксиды химически активных металлов характеризуются основными свойствами, По мере уменьшения активности металлов, а особенно [c.125]

    Добавки редкоземельных металлов, как правило, благоприятно влияют на стойкость к окислению хрома и его сплавов, включая газотурбинные сплавы [60], причем наиболее благоприятна добавка иттрия. Имеются данные [61, 62], что добавление 1 % иттрия в сплав 25 % Сг—Fe повышает верхнюю температурную границу устойчивости сплава к окислению до 1375 °С. Сооб-ш,ается, что легирование иттрием замедляет скорость окисления, увеличивает пластичность оксида металла, изменяет коэффициент температурного расширения металла или его оксида, однако основной функцией этой добавки является снижение скорости отслоения оксида при цикличном нагревании и охлаждении сплава [63]. Предполагается [64], что в твердых растворах иттрий заполняет вакансии, предотвращая их слияние на границе раздела металл — оксид, что, в свою очередь, снижает пористость оксида, предотвращая его отслоение от металла. [c.207]

    Если вещество может выделяться в твердом виде на электрод де, например в виде металла, оксида или нерастворимой соли, то существует возможность кулонометрического определения количества тока, необходимого для полного выделения определяемого вещества из раствора. Конечную точку устанавливают при этом по резкому возрастанию потенциала рабочего электрода, которое связано с тем, что из-за необходимости поддержания постоянного значения силы тока по окончании основной реакции должен протекать другой окислительно-восстановительный процесс (обычно разложение воды), сопровождаемый соответствующим увеличением потенциала. Этот метод-можно успешно применять для определения тонких слоев покрытий на проводниках. [c.273]


    Согласно первой теории малая добавка легирующего элемента должна окисляться с образованием ионов определенной степени окисления и, растворяясь в оксиде основного металла, уменьшать в нем число дефектов решетки. [c.364]

    По химическим свойствам простые вещества, как известно, также подразделяются на металлы и неметаллы. С этими двумя классами генетически связаны соответствующие ряды характеристических соединений оксидов (основных и кислотных), гидроксидов (оснований и кислот). Отличительной особенностью этих рядов является способность к взаимодействию с образованием солей, т. е. к взаимной нейтрализации в широком смысле слова. Чем ярче выражены металлические и неметаллические свойства простых веществ, тем активнее взаимодействие между ними и их характеристическими соединениями. Таким образом, в химии ярко проявляется симметричность относительно кислотно-основного взаимодействия, причем каждый из генетических типов базируется на одном из двух классов простых веществ. [c.39]

    Теория пассивности металлов разрабатывается уже несколько десятков лет, начиная с работ В. А. Кистяковского, предложившего пленочную теорию заш,иты металлов. В основном в теории пассивности металлов суш,ествуют два направления а) создание на поверхности металла пленок соединений (оксиды и т. д.) б) образование адсорбционных слоев из ионов и полярных молекул на поверхности металла. [c.547]

    Металлографическими, рентгенографическими и рентгеноспектральным анализами установлено, что продуктами коррозии являются сложные двойные оксиды никеля, хрома и щелочного металла, в основном, лития. [c.26]

    С помощью растворов щелочных металлов в основных растворителях можно достаточно просто синтезировать ряд соединений, которые иным путем получаются с трудом. Это, иапример, оксиды и сульфиды щелочных металлов (при непосредственном взаимодействии щелочных металлов с кислородом и серой образуются, соответственно, пероксиды и полисульфиды). [c.85]

    Металлы образуют основные оксиды и гидроксиды — основания. Если будет доказано, что хром образует основание, то тем самым мы убедимся, что химический элемент хром проявляет металлические свойства. [c.148]

    Оксиды щелочных металлов М2О являются типичными основными оксидами, а гидроксиды — щелочами, которые хорошо растворимы в воде и создают сильнощелочную среду Оксиды и гидроксиды элементов ПА-группы (кроме бериллия) проявляют основные свойства гидроксиды стронция и бария из-за хорошей растворимости в воде можно называть щелочами аналогично гидроксидам щелочных металлов. Оксид и гидроксид бериллия амфо-терны. [c.115]

    При гетерогенном катализе катализатор образует самостоятельную фазу, отделенную границей раздела от фазы, в которой находятся реагирующие вещества. В качестве катализаторов, например, используют металлы, оксиды и сульфиды металлов и их смеси, кислые и основные соли, кислоты и основания. [c.377]

    В гетерогенно-каталитических реакциях в качестве основных катализаторов применяются основания, щелочные и щелочноземельные металлы на носителях (оксид алюминия, силикагель, поташ и другие), оксиды металлов, проявляющие основные свойства. [c.730]

    При катализе оксидами металлов слабым основным центрам обычно сопутствуют сильные кислотные центры и наоборот. Но кислотные центры (ион металла) и основные центры (ион кислорода) существуют у всех оксидов, так что катализ всегда может быть бифункциональным кислотно-основным. То же самое можно сказать о смешанных оксидах и солях. При проведении реакции весьма важно выбрать такой катализатор, чтобы его основные и кислотные центры геометрически соответствовали кислотным и основным группам реагентов, например, при дегидратации спиртов на активном оксиде алюминия  [c.731]

    Однако реализовать кислородный электрод, поведение которого описывалось бы выведенными уравнениями, иа практике весьма трудно. Это обусловлено особенностями, отличающими все газовые электроды, и, кроме того, способностью кислорода (особенно во влажной атмосфере) окислять металлы. На основную электродную реакцию накладывается поэтому реакция, отвечающая метал-локсидному электроду второго рода. Даже на платине могут образовываться оксидные пленки, и поведение кислородного электрода не будет отвечать теоретическим ургвнениям эти отклонения проявляются, папример, в характере изменения потенциала с давлением кислорода. Кроме того, имеются основання полагать, что реакция иа кислородном электроде да ке в отсутствие поверхностных оксидов отличается от той, на которой основан вывод уравнения для потенциала кислородного электрода. По данным Берла (1943), подтвержденным и другими исследователями, часть кислорода восстанавливается на электроде не до воды, а до ионов пероксида водорода  [c.167]


    Открытие периодического закона. К середине XIX в. был накоплен достаточно богатый экспериментальный материал о свойствах химических элементов и их соединений. Так, было установлено, что оксиды щелочных и щелочноземельных металлов проявляют основные свойства, а оксиды галогенов и других неметаллических элементов— кислотообразующие свойства. Было известно также о существовании элем М1тов с промежуточными свойствами, высшие оксиды которых являются кислотообразующими, а низише — основными. Эти свойства химических элементов могли быть оценены тогда только качественно. Наряду с этим такие свойства химических элементов, как, например, атомные массы, валентность и некоторые другие, уже определяли количественно и весьма точно. [c.34]

    Металлические и неметаллические элементы различаются по своим физическим и химическим свойствам. Неметаллические элементы не имеют характерных для металлов блеска, ковкости и пластичности, а также хорошей электро- и теплопроводности. В структуре твердых неметаллических элементов атомы окружены сравнительно небольшим числом ближайших соседей и связаны друг с другом ковалентными связями. Неметаллические элементы характеризуются более высокими энергиями ионизации и электроотрицательностями, чем металлические элементы. Растворимые оксиды неметаллических элементов обычно образуют водные растворы, обладающие кислотными свойствами по этой причине неметаллические оксиды называю 1О1СЛ0ТИЫМИ ангидридами. В отличие от них растворимые оксиды металлов образуют основные растворы, и поэтому называются основными ангидридами. [c.329]

    СЯ основаше растворимые оксиды металлов являются основными ангидридами. [c.332]

    Все оксиды белого цвета, тугоплавки. Оксиды скандия и иттрия трудно растворимы в воде и разбавленных кислотах. Оксиды лантана и актиния тоже трудно растворимы в воде, но легко растворимы в минеральных кислотах с образованием солег . Оксиды лантана и актиния энергично взаимодействуют с водой, образуя нерастворимые гидроксиды. Все оксиды этих металлов обладают основным характером, усиливающимся к АсаОд только у оксида скандия обнаруживаются слабо выраженные амфотерные свойства. [c.357]

    Состав простых нормальных оксидов определяется окислительным числом электроположительного элемента и выражается формулами ЭаОп (нечетное окислительное число п) или Э0 /2 (четное окислительное число). Свойства простых оксидов определяются характером связанного с кислородом элемента. Оксиды химически активных металлов характеризуются основными свойствами. По мере уменьшения активности металлов, а особенно при переходе к неметаллическим элементам свойства их оксидов непрерывно изменяются от типично основных через амфотерные к кислотным. [c.59]

    Энергетическая ширина 45-зоны составляет около 10 эВ, причем в ней на атом металла приходится всего два электрона. Ширина З -зопы меньше (для никеля 2,8 эВ), но число электронов в ней, конечно, больше, — именно максимум десять на атом. Электропроводность металлов в основном обусловлена электронами 4s-зоны. Перекрывание этих двух зон в оксидах меньше, чем в металлах, и даже может и вовсе не иметь места. В этом случае электропроводность обусловлена только электронами З -зоны. Наконец, могут быть случаи, когда эта зона становится настолько узкой, что можно говорить о фиксации всех электронов на соответствующих катионах решетки. Оксид в этом случае становится диэлектриком. Замечательно, что совершенно чистые и бездефектные кристаллы оксидов хрома (III), марганца (III), железа (111), кобальта (И), никеля (II) и меди (II) тока не проводят — их удельное сопротивление достигает 10 ° Ом-см. Проводимость появляется, если в кристаллах содержатся примеси. [c.288]

    Среди соединений металлов важнейшее значение имеют оксиды. Их состав выражается общей формулой МехОу, где атомы кислорода непосредственно связаны с атомами металла и не связаны друг с другом. Оксиды наиболее активных металлов характеризуются основными свойствами. По мере уменьшения активности металлов свойства их оксидов изменяются от типично основных через амфотерные к кислотным. [c.76]

    Сложными оксидными рудами являются соединения двух оксидов, из которых один обладает основным характером, а другой — амфотерным или кислотным. В общем случае это могут быть оксиды одного и того же металла. Например, основный оксид железа Р еО может давать соль с амфотерным оксидом РедОз  [c.284]

    Щелочные металлы образуют основные оксиды (например, NaaO, KiO) и соответствующие им гидроксиды (NaOH, КОН), которые являются щелочами.  [c.119]

    В рамках каждой из двух концепций делаются попьггки объяснить все факты и эмпирич. закономерности оксидной П. м. Так, нек-рые сторонники адсорбц. концепции признают существование иа пассивной пов-сти фазового оксида, ио основное защитное действие связывают с хемосорбцией кислорода на границе металл-оксид или оксид-р-р. В иек-рых вариантах пленочной концепции энергетич. неоднородность пов-сти учитывается при рассмотрении образования и роста зародышей новой фазы, в процессах нарушения П. м. По-видимому, при оксидной П. м. адсорбция и образование фазовых пленок должны рассматриваться в неразрывной связи друг с другом, причем в разл. случаях тот или иной процесс м. б. определяющим. [c.449]

    Нитраты — соли азотной кислоты, устойчивы при обычной температуре. Получают действием HNOa на металлы, оксиды, гидроксиды, соли. Основные применения — удобрения (селитры), взрывчатые вещества (аммониты) и др. [c.90]

    К кислотно-основному (ионному) катализу относятся реакции гидратации, дегидратации, аминирования, изомеризации, алкилирования и т. п. (см. табл. 8). Катализаторами для этих реакциГ служат твердые кислоты или основания, обладающие лишь ионной проводимостью. К кислотным катализаторам относятся малолетучие кислоты (Н3РО4, Н2504), нанесенные на пористые носители, кислые соли (фосфаты, сульфаты), а также твердые неорганические вещества, способные передавать анионы (алюмосиликаты, частично гидратированные оксиды А1, 51, У, галогениды металлов). К основным катализаторам относятся гидроксиды и оксиды щелочных и щелочноземельных металлов на носителях и без них, щелочные или щелочноземельные соли слабых кислот (карбонаты и т, п.). [c.226]

    Кислоты Это сложные вещества, состоящие из кислотных остатков и одного или нескольких атомов водорода, способных замещаться на атомы металлов Кислоты весьма разнообразны как по агрегатному состоянию (газообразные, жидкие, твердые вещества), так и по физико химическим свойствам Большинство кислот хорошо растворимы в воде Их важнейшее химическое свойство — способность образовывать соли при взаимодействии с основаниями и основными оксидами Число атомов водорода в молекуле кислоты, способных замещаться на металл, называется основностью кислоты НЫОз—одноосновная, Н25 04 — двухосновная, Н3РО4 — трехосновная, Н4Р2О7 — четырехосновная, СН3СООН — одноосновная кислоты [c.25]

    Основными могут быть только оксиды металлов. Однако не все оксиды металлов являются основными — многие из них относятся к амфотерным или кислотным (так, rgOg — амфотерный, а rOg — кислотный оксид). Часть основных оксидов растворяется в воде, образуя соответствующие основания  [c.195]

    Суперосновные свойства определяет поверхностный ион оксидов металлов, т. е. чем меньше электроотрицательность окружающих ионов металла, тем выше основность. Кроме того, чем больше расстояние между О и ионом металла и чем меньше координационное число О по отношению к иону металла, тем также выше основность. Поэтому добавка натрия, имеющего низкую электроотрицательность, или изменение структуры при приготовлении или термообработке оксида металла приводит к появлению суперосновных свойств. Наиболее типичными оксидами металлов с основными свойствами являются оксиды металлов типа MgO и СаО. [c.731]


Смотреть страницы где упоминается термин Металл оксиды, основность: [c.178]    [c.476]    [c.276]    [c.358]    [c.124]    [c.138]    [c.364]    [c.263]    [c.155]    [c.247]    [c.337]    [c.628]    [c.24]    [c.67]    [c.93]    [c.148]    [c.31]   
Неорганическая химия (1987) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Оксид металлов

Оксиды основные

Основные металлы



© 2025 chem21.info Реклама на сайте