Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппарат сжигания

    Выбросы вредных веществ подразделяют также на организованные и неорганизованные. Организованные выбросы — это выбросы, которые отводятся от мест выделения системой газо-отводов, что позволяет применять для их улавливания газопылеулавливающие установки. На нефтеперерабатывающих и нефтехимических предприятиях основные источники организованных выбросов —дымовые трубы технологических печей, печей сжигания отходов, ТЭЦ, котельных свечи газомоторных компрессоров, пароэжекционных установок, регенераторов катализатора, электрофильтров, окислительных кубов, хвостовых выбросов, циклонов, скрубберов, абсорберов, факела вентиляционные трубы и аэрационные фонари производственных помещений, грануляционных башен, воздушки емкостей и аппаратов, диффузоры градирен. [c.16]


    Основные стадии процесса следующие получение диоксида серы в результате сжигания в топке сероводородного газа охлаждение полученного диоксида углерода в котле-утилизаторе с получением водяного пара окисление диоксида серы до триоксида в контактном аппарате, загруженном ванадиевым катализатором конденсация триоксида серы и паров воды с образованием серной кислоты улавливание тумана и капель серной кислоты в электрофильтре. Технологическая схема установки представлена на рис. ХП-5. [c.113]

    Технологические режимы любой топки и газогенератора зависят от тепловых и гидродинамических условий, расхода топлива и дутья, а также инерционности аппарата. Сжигание топлива в пылевидном состоянии характеризуется малой концентрацией топлива в единице объема, а потому факельный процесс отличается небольшой тепловой инерцией и большой чувствительностью к колебаниям в подаче топлива и дутья. Вихревой и слоевой процессы отличаются значительно большей устойчивостью, тем большей, чем больше размеры аппарата. [c.50]

    В табл. 5.1, 5.2 дается сравнительная оценка различных методов и аппаратов обезвреживания жидких и газообразных отходов. Сравнение двух подходов к оценке эффективности систем обезвреживания — через показатели г и КБ — наглядно демонстрирует тот факт, что большое значение Г1 далеко не всегда говорит о высокой эффективности выбранного метода пли аппарата с санитарной точки зрения. Так, при высокой степени очистки от окислов азота адсорбцией на угле СКТ (96,8%) в действительности в выбросах в атмосферу содержится окислов азота больше чем в 5000 раз по сравнению с санитарной нормой. Сжигание этилмеркаптана в камерной печи, оцениваемое как 99,9 % по основному продукту, создает такие выбросы в атмосферу за счет продуктов распада, которые в 800—1700 раз превышают санитарные нормы. Но для тех же химических соединений степень очистки, исчисляемая меньшими величинами г], может оказаться вполне достаточной и иметь выбросы, близкие к санитарным нормам. [c.467]

    Для предотвращения взрывов в аппаратах необходимо строго соблюдать режим дозировки газа и воздуха, а также режим продувки топочного пространства при пуске и остановках печи. Чтобы обеспечить необходимый режим сжигания топлива, весьма важно поддерживать стабильным давление топливного газа в печи пиролиза. Для этого устанавливают на печи регулятор давления, связанный с клапаном, находящимся на трубопроводе основного потока топливного газа. Кроме того, в сети топливного газа печей пиролиза давление автоматически может регулироваться клапаном, установленным на линии подачи газа в топливную сеть от второго (резервного) источника. [c.322]


    Из табл. 4.3 видно, что годовой расход топлива на обезвреживание газов по мере увеличения единичной мощности установок в регенеративных аппаратах сжигания значительно снижается, в то время как в других конструкциях наблюдается обратная тенденция. За счет этого и других факторов удается заметно уменьшить приведенные затраты на обезвреживание газов в установках этого типа производительностью более 8000 нм /ч (табл. 4.4). [c.153]

    Принципиальным отличием ракетного двигателя является то, что он работает независимо от окружающей среды. При сжигании горючего в ракетном двигателе используется не кислород воздуха, а специальный окислитель, запасы которого должны быть на борту летательного аппарата. В ракетных двигателях могут применяться в качестве топлива вещества, способные выделять тепловую энергию, и газообразные продукты в результате разложения, ассоциации, ядерных процессов или других реакций без участия окислителя. [c.116]

    При термическом хлорировании, изменяя условия процесса соотношение исходных веществ, режим хлорирования, можно направить реакцию в сторону преимущественного образования того или иного хлорпроизводного. Так, хлористые метил и метилен получаются рп большом избытке метана [СН4 С12=(3—8) 1] при 400—450°С. Большой избыток метана в реакционной смеси одновременно позволяет отводить теплоту из зоны реакции. Хлорирование осуществляют в специальном реакторе камерного типа (рис. 62), стальной корпус которого футерован шамотным кирпичом. В верхней части имеется насадка в виде фарфоровых колец. После предварительного -разогрева аппарата сжиганием горючего газа (смесь метана с воздухом), в результате чего футеровка и насадка аккумулируют теплоту, по керамической трубе, конец которой опущен во внутренний керамический цилиндр, подается исходная газовая смесь, которая также заранее подогревается до 120—250°С. Продукты реакции отводятся из верхней части аппарата и направляются на разделение. [c.136]

    Температура во всем объеме кипящего слоя почти одинакова и не превышает 800—850°С. Потери тепла в окружающую среду в печи невелики, поэтому для поддержания указанной температуры необходимо отводить большое количество тепла. Для этого в зоне кипящего слоя располагают теплообменники для подогрева воды или секции труб парового котла и таким образом совмещают в одном аппарате сжигание колчедана с получением пара. При этом можно получить до 1500 кг пара на 1000 кг обжигаемого колчедана. Унос пыли из печей для обжига в кипящем слое составляет от 30 до 90% всего огарка. Поэтому запыленный газ вначале пропускают через 1—2 циклона, где отделяется основная масса наиболее грубой пыли, а затем газ поступает в электрофильтр. Благодаря высокой скорости горения и интенсивному перемешиванию в кипящем слое находится не колчедан, а огарок. Содержание серы в огарке на различных участках кипящего слоя примерно одинаковое —0,5—1%. Высота кипящего слоя зависит от производительности печи и достигает 1,0 — 1,25 м. [c.169]

    Установки являются развитием перегонных аппаратов, толька подвод тепла осуществляется таким образом, чтобы исходный продукт быстро нагревался и необходимое время оставался при высокой температуре. Исходный продукт предварительно нагревается в теплообменнике вне печи до - 300—350 °С и вводится в зону конвекции печи, где подогревается горячими отработанными газами до —400— 500 °С. Затем он попадает в зону излучения и достигает окончательной температуры пиролиза благодаря непосредственному обогреву труб от сжигания газового или котельного топлива. При пиролизе пропана температура достигает 780—800 °С, для легкого бензина достаточно 720—750 С. Трубы изготовляют из высоколегированных хромоннкелевых сталей, в наиболее теплонапряженных местах применяют сплавы меди илн хрома. [c.23]

    Чтобы предотвратить попадание влаги в аппараты, необходимо материалы, используемые в синтезе ТИБА, освобождать от влаги. Например, изобутилен осушают в аппаратах, заполненных хлористым кальцием. По мере насыщения водой хлористый кальций заменяют свежим. Содержание влаги в изобутилене не должно превышать 0,001% (масс.). В трансформаторном и индустриальном, (веретенном) маслах, применяемых в производстве ТИБА в качестве тепло- и хладоносителей, а также в качестве разбавителя шлама, присутствие влаги не допускается. Замасленный шлам толуола после промывки аппаратов и трубопроводов и отработанное масло сжигают в печи, обогреваемой природным газом. Распыление продуктов сжигания осуществляется форсунками, в которые подается азот для обеспечения полного сгорания в печь-подают сжатый воздух. [c.153]

    Для расчета теплоотдачи продуктов сгорания к стенкам нагреваемого аппарата необходимо знать теплофизические константы продуктов сгорания для расчета скорости движения продуктов сгорания вдоль поверхностей нагрева — количество продуктов сгорания, получаемое при сжигании топлива необходимо также уметь рассчитать лучистый теплообмен в топочном пространстве. Эти вопросы подробно изложены в литературе, главным образом в литературе по котлостроению. [c.252]


    Чтобы предупредить аварии при возможных отклонениях от режима, аппараты термоокислительного пиролиза метана снабжают блокирующими устройствами, автоматически прекращающими подачу кислорода в агрегат при повышении против установленной величины перепада давления в реакторе или смесителе, а также температуры в смесителе при снижении расхода природного газа менее расчетного при снижении давления кислорода в коллекторе и уменьшении температуры газов пиролиза после реактора. Кроме того, блокировки автоматически включают подачу азота в агрегат при прекращении подачи кислорода имеются также блокирующие устройства сброса и сжигания некондиционных газов во время пуска агрегата и производственных неполадок. На рис. 3 показана структурная схема блокировок агрегата термоокислительного пиролиза метана. Из схемы видно, что при повышении концентрации кислорода в пирогазе до опасных пределов срабатывает автоблокировка, отключающая реактор и включающая [c.31]

    Утечки ТИБА с последующими загораниями в производстве были связаны с неудовлетворительной сваркой трубопроводов и аппаратуры, а также с несовершенством системы транспорта отходов производства. Первоначально было предусмотрено сл ига-ние отходов производства, поступающих в передвижной таре объемом 250 л. Отходы производства из стационарного технологического аппарата передавливались в передвижной контейнер, который на тележке доставлялся к печи сжигания. При выполнении этих опасных операций аварии были связаны с многочисленным подключением и отключением передвижного контейнера. Поэтому такой способ транспортировки отходов из технологической аппаратуры к печам сжигания был заменен другим, передавливанием по стационарному трубопроводу в промежуточную герметичную емкость, нз которой они поступают на сжигание. [c.156]

    Сообщение аппаратов с атмосферой должно осуществляться через масляные затворы с автоматической подачей в них азота, давление которого в системе должно быть избыточным. Стравливание давления в реакторах синтеза АОС до атмосферного должно проводиться также через масляный затвор с автоматической подачей азота в него для сжигания стравливаемых газов на факеле. Выход от предохранительных клапанов должен осуществляться тоже через масляные затворы. Масляные гидрозатворы можно устанавливать на воздушке и клапанах при сравнительно небольших газовых сбросах. На многотоннажных агрегатах производства АОС и синтеза на его основе при больших объемах и высоких скоростях залповых сбросов после предохранительных клапанов и воздушек практически невозможно обеспечить нормальную работу таких гидрозатворов, что обусловлено выбросом затворной жидкости. Для обеспечения же необходимой нормальной работы гидрозатворов при огромных залповых сбросах газов потребовалось бы сооружение масляных затворов гигантских размеров. Поэтому в многотоннажных производствах все воздушки и трубопроводы сброса от предохранительных клапанов ведут к специальной факельной системе. В этой факельной системе обеспечивается постоянное небольшое избыточное давление топливного газа (инертного по отношению к АОС), что исключает возможность проникновения воздуха (кислорода) в систему. [c.162]

    Описано много случаев взрывов в аппаратах разделения воздуха, вызванных попаданием в аппараты даже незначительного количества ацетилена. Поэтому в воздухе, поступающем в цехи его разделенпя, содержание ацетилена должно быть не более 0,25 мл на 1 м воздуха. Все некондиционные ацетиленсодержащие газы должны полностью сжигаться до двуокиси углерода и воды. В производстве ацетилена (нз углеводородного сырья) такое сжигание является сложной задачей, так как газовые выбросы могут [c.199]

    Перечисленные схемы позволяют осуществлять одновременно и непрерывно две основные операции, правда в разных аппаратах крекинг сырья в реакторе и сжигание кокса в регенераторе. [c.61]

    На установке имеются три воздуходувки, смонтированные вместе с обслуживающими их электромоторами на плитах. Воздух от двух воздуходувок используется для транспортировки отработанного и регенерированного катализатора. Третья воздуходувка обслуживает регенератор. Топки под давлением предназначены для нагрева воздуха, нагнетаемого в регенератор и пневмоподъемники.. Каждая топка представляет собой горизонтальный аппарат цилиндрической формы, состоящий из камеры сгорания топлива и камеры смешения, где происходит смешение холодного топлива с горячими дымовыми газами. Топки снаружи изолированы. В каж-,дой топке установлена форсунка для сжигания жидкого топлива. [c.103]

    В регенераторах установок первой подгруппы на сжигание 1 кг кокса расходуется 15—20 кг воздуха. На расход воздуха влияют ве только содержание водорода в коксе и полнота окисления углерода, но и режим процесса регенерации и конструкция аппарата. [c.119]

    Охлаждаемые водой змеевики расположены между ложным днищем и воздухораспределителем верхней части аппарата или, иначе говоря, между зонами сжигания. Ложное днище является разделяющей перегородкой, препятствующей проникновению больших количеств продуктов сгорания из нижней зоны в верхнюю Таким образом создается возможность более гибкого регулирования режима работы регенератора. [c.128]

    Чтобы иметь аппараты практически приемлемого размера, а также чтобы уменьшить чисто термическое разложение сырья, процессы его крекинга и сжигания кокса проводят в слое с высокой концентрацией частиц катализатора, т. е. в густой йли плотной фазе. [c.140]

    Сжигание сероводородсодержащего газа при производстве серной кислоты обычно осуществляют с заметным избытком воздуха по сравнению со стехиометрическими коэффициентами уравнения реакции получения диоксида серы. При нормальной эксплуатации установки в контактные аппараты подают газ, содержащий 6—8 % (об.) 80а и 11 —12 % (об.) Оа, что достигается подачей в топку 8—10-кратного избытка воздуха по отношению к сероводороду. В качестве катализатора в контактных аппаратах используют сульфованадат-диатомовую массу. При изготовлении в нее вводят пиросульфат калия, образующий с пятиокисью ванадия активный комплекс УаОд-КаЗаО,. При прокаливании [c.114]

    Метод заключается в испарении и сжигании навески нефтепродукта при высокой температуре с разложением в специальном аппарате и в количественном определении образовавшегося углистого остатка весовым способом. Наряду с методом определения коксуемости по ГОСТ 5987—51, определение производят также [c.209]

    Сначала сжигают водород в стеклянной трубке, так называемой петле, представляющей собой изогнутую трубку, заполненную окисью меди. К трубке припаяны отогнутые под прямым углом капилляры, расстояние между которыми должно соответствовать расстоянию между вторым и третьим кранами на гребенке петлю присоединяют к отросткам этих кранов при помощи хороших вакуумных каучуковых трубок и нагревают трубчатой электрической печью, обеспечивающей температуру до 300° С. Перед тем как приступить к сжиганию водорода, петлю и гребенку заполняют обычно азотом. Последний получают на этом же приборе путем поглощения пирогаллолом кислорода из забранного в аппарат небольшого количества [c.245]

    Обычно регенератор — самый крупный аппарат установки каталитического крекинга, его объем значительно превышает объем реактора. Примерные размеры регенераторов для сжигания 3—4 т/ч кокса составляют объем цилиндрической части 3(Ю—450 м , диаметр 6—8 м, общая высота 12—18 м /2/. В табл. 4 приведены размеры и некоторые показатели работы регенераторов крекинг-установок флюид. [c.41]

    Желобчатые оросители применяют в колоннах круглого и квадратного сечения. Кроме того, их иногда используют для наружного орошения стенок аппаратов. В полых колоннах сжигания фосфора для защиты внутренних стенок от действия высоких температур применяют их орошение кольцевым желобом, расположенным [c.105]

    Хлорирование осуществляют в реакторах разных типов, один из них представлен на рис. 151. Стальной корпус этого реактора периодического действия футерован шамотным кирпичом. В верхней части имеется насадка 3 в виде фарфоровых колец. После предварительного разогрева аппарата сжиганием горючего газа (смесь метана с воздухом), в результате чего футеровка и насадка аккумулируют тепло, по керамической трубе, конец которой опущен во внутренний керамический цилиндр 4, подается исходная газовая смесь, которая предварительно подогревается до 120— 250 °С. Продукты реакции отводятся из верхней части аппарата и направляются на разделение. Сначала вымывается водой хлористый водород с получением высококонцентрированной товарной соляной кислоты. Затем после нейтрализации раствором едкого натра и осушки вымораживанием газ сжимают и ожижают методом глубокого охлаждения. Индивидуальные хлорпроиз-водные выделяют из полученной смеси рек- [c.498]

    Хлорирование осуществляют в специальном реакторе (см. рис.44), стальной корпус которого футерован шамотным кирпичом. В верхней части имеется насадка в виде фарфоровых колец. После предварительного разогрева аппарата сжиганием горючего газа (смесь метана с воздухом), в результате чего футеровка и насадка аккумулируют тепло, по керамической трубе, конец которой опущен во впутрешшй ке-ра. шческий цилиндр, подается исходная газовая смесь, которая также заранее подогревается до 120—250 С. Продукты реакции отводятся из верхней части аппарата и направляются на разделение. [c.140]

    Упаривание можно проводить также в аппаратах с погруженными горелками, в которых сточные воды нагревавтся при непос-рчдотвеннои контакте о дымовыми газами, получаемыми от сжигания газообразного или жидкого топлива в горелках, погруженных в воду. [c.76]

    Исследование поровой характеристики проведено на поро51 метре Карло-Эрба (модель 70). Создаваемое в аппарате давление от 0,1 до 196 МПа позволяет определять объем пор радиусом от 3,75 до 7500 нм. Удельная поверхность определена методом тепловой десо ции азота хроматографически. Содержание углерода и серы на катализаторе определялось сжиганием и оценкой количества по продуктам горения, ванадия, никеля, железа - химическими методами. Проба катализатора на анализ отбиралась из верхней и нижней части слоя. Подача водородно-сырьевой смеси осуществлялась восходящим потоком. [c.132]

    Пример 9. При сжигании колчедана печной газ имеет следующий состав 9,0% SO2, Ю7о Оа и 81 7о N2. После пропускания этого газа через контактный аппарат при t = 527° С и Р-= 1,2 ата концентрация неирореагировавшего SO2 в конечном газе равно 2,04%. Определить константу равновесия реакции окисления SO2 в SO3 при заданной температуре. [c.207]

    Аварийная ситуация назревала следующим образом. Обслуживающий персонал заметил, что стенки сборника второй фракции — первичного спирта ацетиленового ряда (товарная фракция) —сильно разогрелись. С целью снижения температуры и предупреждения аварии аппарат снаружи стали поливать водой, а в сборник направили азот. Однако принятые меры оказались недостаточно эффективными, так как через 20 мин в оборн.ике произошел взрыв. Вслед за этим взрывом последовал взрыв стоящей вне здания цистерны, на 1/4 заполненной кубовой жидкостью, предназначенной для сжигания. Поврежденными оказались и другие аппараты, а также технологические трубопроводы и здание цеха. [c.145]

    Для продувки трубопроводов после сжигания в распределительный продуктовый коллектор перед форсунками подают азот. Шлам по мере накопления после замасливания поступает по стационарным линиям в печи для сжигания. Замасливание шлама производится веретенным маслом. Шлам из аппаратов в печи-можно передавливать осушенным азотом или можно перекачивать, погружным насосом. [c.153]

    АСПВ в химической промышленностн применяют широко п эффективно для защиты от взрывов аппаратов и трубопроводов. Такие системы установлены более чем ка 500 предприятиях. В течение 1968—1970 гг. зарегистрировано более 50 случаев срабатывания этих систем, что позволило предотвратить взрывы на предприятиях. Поэтому следует ожидать, что в скором времени такие системы найдут широкое применение для предупреждения проскока и распространения пламени в факельных трубопроводах на системах сжигания отходящих газов химических производств. Это позволит в значительной мере повысить уровень безопасности взрыво- н пожароопасных химических производств без значительного усложнения технологических схем и их аннаратурного оформления. [c.226]

    После нескольких месяцев работы у основания резервуара, в месте подсоединения впускного трубопровода, появились трещины. Этилен стал интенсивно выходить в атмосферу через эти трещины. Взрывоопасный газ удалось рассеять подачей пара. Выяснилось, что трещины появились в то время, когда установка охлаждения была отключена и предохранительный клапан был открыт. Струя холодного газа заморозила конденсат, стекающий по стейкам вытяжной трубы образовалась ледяная пробка, полностью перекрывшая проходное сечение трубы (диаметр трубы 200 мм). Трещины в резервуаре были вызваны превышением давления сверх допустимого. До аварии в течение 11 ч прибор показывал давление в резервуаре более 14 кПа (0,14 кгс/см ), однако обслуживающий персонал не придал этому значения. В качестве временной меры подача пара в трубу была заменена подачей пара в кольцо, расположенное в верхней части вытяжной трубы. В дальнейшем вытяжную трубу заменили факельной трубой, сохранив подачу пара в кольцо бездымного сжигания. Однако через некоторое время в резервуаре снова повысилось давление сверх допустимого. Оказалось, что труба плотно забита обломками огнеупорного кирпича, обвалившимся с верхней части трубы, и вновь перекрыта пробкой, которая образовалась из конденсата, попавшего в трубу. Конструкция трубы была изменена — была установлена воронка для слива конденсата. Разработаны инструкции, в соответствии с которыми пар должен подаваться в систему только при больших расходах газа, поступающего на факел. При большем расходе газа конденсат уносится и не стекает по трубопроводу. Необходимо отметить, что предохранительный клапан не должен был использоваться в этой системе для обеспечения нормального режима. Эти клапаны должны быть предназначены только для защиты аппарата. Кроме того, следовало установить регулятор давления, срабатывающий при давлении, несколько меньшем давления, при котором срабатывают предохранительные клапаны, и клапан с дистанционным управлением на линии сброса газа в трубу. [c.239]

    С. Применяются подогреватели радиационно-конвективного типа, в которых нагревание происходит за счет тепла сжигания природного газа. Нагреваемый газ проходит по трубкам конвекционную зону, потом радиационную и здесь окончательно нагревается до требуемой температуры. Горячие газы поступают через смеситель 5 в реактор 6, где образуются газы пиролиза (табл. 2), поступающие далее на сажеочистку в скруббер 5, мокрый электрофильтр 9 и пенный аппарат /2. [c.11]

    Диоксид серы получают также сжиганием серы, В этом случае образуется газ, свободный от вредных примесей поэтому отпадает необходимость в оч[1стительиых аппаратах, что значительно упрощает производство серной кислоты. [c.391]


Смотреть страницы где упоминается термин Аппарат сжигания: [c.191]    [c.211]    [c.40]    [c.6]    [c.85]    [c.100]    [c.160]    [c.106]    [c.113]    [c.62]    [c.210]    [c.124]    [c.152]    [c.153]   
Очерк общей истории химии (1979) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Сжигание



© 2025 chem21.info Реклама на сайте