Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никеля комплексы спектры

Рис. 10.21. Электронные спектры поглощения некоторых комплексов никеля. Рис. 10.21. <a href="/info/105806">Электронные спектры поглощения</a> <a href="/info/1537529">некоторых комплексов</a> никеля.

    Бесспиновые тетрагональные комплексы никеля(П), в которых два лиганда, занимающие либо цис-, либо транс-положения, отличаются от четырех других, но имеют схожие величины Од, дают спектры, очень похожие на спектры комплексов 0 . Например, если искажение в транс-комплексе близко к нулю (см. рис. 10.17), ожидается типичный спектр [c.105]

    Полученные для железа и никеля данные наносят на один график в координатах оптическая плотность - длина волны. Значения X. для каждого светофильтра приведены в описаниях соответствующих приборов. На основании кривых светопоглощения производят выбор светофильтра. Подходящим является тот участок спектра, где поглощение тиоцианатного комплекса железа является максимальным, а поглощение соли никеля незначительно. [c.155]

    Сущность работы. Растворы солей никеля и тиоцианатного комплекса железа имеют различную окраску. Это позволяет выделить участки спектра, где поглощает только раствор соли [c.167]

    С ЭТИМИ тремя реагентами, а также комплекс никеля с диметилглиоксимом не разрушаются при обработке экстрактов раствором щелочи, применяемой для разрушения соответствующих комплексных соединений кобальта и меди, часто сопутствующих никелю. Действием щелочи избыток этих реагентов удаляется из слоя органического растворителя и можно измерять поглощение только комплексного соединения в ультрафиолетовой области спектра, где е имеет более высокое значение. [c.187]

    Для комплексных соединений наиболее информативным является изучение спектральной области, в которой лежат d — d-переходы металла. Соединения таких металлов, как медь, кобальт, никель, железо, хром имеют полосы поглощения, связанные с d — -переходами, в удобной для измерений видимой области спектра. Поэтому кривые ДОВ таких комплексов изучались еще задолго до появления современных ультрафиолетовых спектрополяриметров. [c.674]

    Значения е в области максимума для различных окрашенных соединений сильно различаются. Так, полосы поглощения простых ионов (аквакомплексов) меди, никеля и др. в видимой части спектра характеризуются низкими значениями е (порядка 10). Окрашенные аммиакаты имеют значение е=10 —10 . Наконец, многие комплексы с органическими реактивами (ализа-ринаты, дитизонаты и т. п.) имеют очень высокие значения —порядка Ю —10 . [c.341]

    При определении кобальта в ацетоно-водных растворах илн после экстракции органическими растворителями водный раствор должен иметь нейтральную или слабокислую реакцию (pH 3—4). Максимум поглощения роданидных комплексов лежит при 625 ммк при этой длине волны оптическая плотность раствора пропорциональна концентрации кобальта приблизительно вплоть до 50 мкг Со. Было предложено также измерять оптическую плотность экстрактов роданида кобальта в изоамиловом спирте в ультрафиолетовой области спектра при длине волны 312 ммк [1011], чувствительность такого определения выше. Одновременное определение кобальта, никеля и меди в. ацетоно-водных растворах в виде роданидных комплексов возможно путем измерения оптической плотности при 380, 480 и 685 ммк [922]. [c.156]


    Комплекс кобальта с ПАН-2 флуоресцирует, максимум флуоресценции лежит при 436 нм, предел обнаружения в среде 95%-ного этанола 10 молей кобальта [811]. В 95%-ном этаноле интенсивно флуоресцирует также комплекс алюминия с ПАН-2 [864] можно определять >2,7-10 г ил А1. Комплексы других элементов (Со, Сг, Ре, Мп, N1, п) имеют максимум флуоресценции в другой области спектра и не мешают определению алюминия. Флуоресценцию комплекса алюминия с ПАН-2 можно использовать для косвенного определения 3-10 молей никеля [811]. Определению не мешают 1000-кратные количества Со, M.g, РЬ и 2п, 100-кратные — 5п(П) 10-кратные — Са, Си, Ре(1П), Н (П) и Мп(П). Минеральные кислоты по-разному влияют на флуоресценцию комплексов, как это показано, например, для алюминия [661] в 10 М НМОд, НС1 или НВг интенсивность флуоресценции увеличивается примерно в 10 раз. Изучение ПАН-1, ПАН-2, ПАН-1-5-4 и их тиазольных аналогов как реагентов для флуориметрического определения галлия показало [841], что наиболее пригодным является ПАН-2. [c.189]

    Как показали дальнейшие исследования, никель в некоторых условиях также служит очень эффективным катализатором специфической циклоолигомеризации бутадиена, которая может привести к образованию преимущественно транс, транс, транс-циклододекатриена-1,5,9 или циклооктадиена-1, 5 [428, 429,435]. В этом случае удается выделить промежуточный олефиновый комплекс металла, который, несомненно, играет важную роль в синтезе С12Н18 [428]. Этот комплекс образуется при обработке ацетилацетоната никеля в эфире алюминийалкилами в присутствии транс, транс, транс-Су Нц. Неустойчивые на воздухе темно-красные иглы М С12Н18 могут возгоняться в вакууме. Они разлагаются при 140—150° с образованием никелевого зеркала и постепенным отщеплением циклододекатриена. В эфирном растворе Н1С12Н]8 быстро взаимодействует с водородом, в результате реакции получаются циклододекан и металлический никель. ИК-спектры показывают, что все три двойные связи принимают участие в образовании связей с металлом и что, следовательно, возможна структура, показанная на рис. 79. Однако пока не известно, находится ли атом никеля в центре цикла или он локализован над циклом. Ответ на этот вопрос, вероятно, [c.165]

    Авторы работы [31] показали, что электронный спектр никеля в другом комплексе—N (N03)4 —характерен для шестикоординационного комплекса, а некоторые из нитратных групп могут бьггь бидентатными. Во многих случаях цвет комплекса иона переходного металла — плохой индикатор его структуры. Октаэдрические комплексы никеля(П) обычно дают три полосы поглощения в интервалах 8000—13 000, 15000—19000 и 25000—29000 см . Точное положение полос зависит от параметров Д и р. Коэффициенты поглощения, соответствующие этим полосам, обычно не превьппают 20. Как указьталось в разделе, посвященном расчетам Од, совпадение рассчитанной и экспфиментальной найденной частот средней полосы рассматривалось как доказательство существования комплекса О . [c.105]

    Никель(П) образует большое число пятикоординационных комплексов [33]. Известны геометрические структуры, в основе которых лежат тригональная бипирамида и тетрагональная пирамида. Для многих комплексов характерно отклонение от указанной геометрии [34]. Циам-полини [35] подробно проанализировал электронные спектры этих комплексов, и читатель может обратиться к оригиналу. Часто, располагая лишь электронным спектром, трудно различить тетраэдрическую и некоторые пятикоординационные конфигурации. [c.106]

    Для расщепления, показанного на рис. 13.11, Б, в спектре должны наблюдаться две линии. Конкретным примером систем такого типа служит основное состояние 2 комплекса никеля(П) в поле 0 - Спин-орбитальное взаимодействие подмешивает возбужденные состояния, которые расщепляют конфигурацию Напо.иним, что расщепление в нулевом поле очень анизотропно и обеспечивает. механизм релаксации для электронного спинового состояния. Поэтому спектр ЭПР комплексов никеля(П) с симметрией 0 трудно регистрировать, и при исследовании, как правило, необходимо их замораживать до температуры жид- [c.221]

    Этот комплекс был разведен в диамагнитном комплексе никеля(П), после чего методом ЭПР исследовали монокристалл полученного соединения [17]. Системы координат, в которых А- и -тензоры диагональны, совпадают, что приводит к величинам д = 2,026 + 0,001, = 2,023 + + 0,001 и ( = 2,086 + 0,001. Главные значения Л-гензора равны соответственно (39 + 1)10 (39 + 1)-10 и (162 + 2)-10" см Величина А, , полученная из спектра растворов, составляет 76см . Из -факторов и уравнений (13.23) — (13.25) для основного состояния можно определить значения а 2 йз 0,01. Подставляя эти значения в уравнения (13.26) — (13.28) и решая их относительно А (основное состояние получаем [c.229]

    Как отмечалось, в нефтях порфирины встречаются в виде комплексов 165, 792- -795] с никелем и ванадилом. Наряду с этим сообщалось также о нахождении следов железопорфиринов [794, 7981. Надежных сведений о наличии в нефти комплексов других металлов или свободных порфиринов не имеется. Некоторые авторы склонны считать доказательством присутствия безметальных порфиринов слабое поглощение в электронных спектрах порфириновых фрагментов в области 630 нм [799], однако его с большим основанием можно отнести к поглощению ванадиловых комплек- [c.142]


    Этим путем удалось выделить и охарактеризовать несколько индивидуальных алифатических и циклических сульфидов (тиофанов). Этим же путем показано наличие производных тиофана общей формулы С На 8 [4] в бензиновом дистилляте иранской нефти. Методом сульфирования для выделения и общей характеристики сернистых соединений пользовались и в исследовательских работах [5—7]. Из бензино-керосинового дистиллята кокай-тинской нефти Узбекской ССР был получен и охарактеризован а-метилтиофан [8]. Методом сульфирования керосинового дистиллята иранской нефти (140—250° С) 0,4 объемн. % 98%-ной серной кислоты выделено и идентифицировано 27 индивидуальных сернистых соединений [9]. Этот метод чрезвычайно сложен, о чем свидетельствует схема, приведенная на рис. 7. Индивидуальные сернистые соединения выделяли в виде комплексов с ацетатом ртути, которые затем разлагали. Строение сернистых соединений устанавливали по физическим свойствам и химической характеристике с помощью инфракрасных спектров. Спек-трометрировали углеводороды, полученные гидрогено-лизом сернистых соединений на никеле Ренея. Таким сложным путем идентифицированы моно- и бициклические сульфиды, диалкилсульфиды и тиофены. [c.97]

    Например, совместное определение кобальта и никеля при помощи 8-оксихинолина основано на использовании области спектра, в которой поглощает свет только 8-оксихинолинат кобальта. Кобальт 8-оксихинолинатный комплекс в смеси 1 Л1 H I — ацетон максимально поглощает свет при длинах волн 365 и 700 нм, в то время как никель-8-оксихинолинатный комплекс имеет пик только при 365 нм (рис. 4.11). Благодаря этому можно провести совместное определение Со + и Ni + с помощью 8-оксихинолина. [c.196]

    Есть сведения о тетраэдрическом строении ряда комплексов N1 (II) с координационным числом 4. В частности, спектры поглощения тетрамминов никеля N1 (МНз)4X2 дают основания считать эти комплексы тетраэдрическими. Однако последние работы А. Е. Порай-Кошица показали, что в ряде случаев вместо тетраэдрической или плоской структуры осуществляются цепочечные структурные мотивы с октаэдрической конфигурацией вокруг никеля (И). Таковы например, Н1Ру2Х2, где X — С1, Вг, ЗСН и т. п. В растворе комплексы N1 (II), по-видимому, имеют октаэдрическое строение. Отдельные изомерные соединения двухвалентного никеля не получены, что связано с довольно высокой степенью ионогенности связей N1 (II) — адденд. Комплексы двухвалентного никеля довольно разнообразны. [c.154]

    Так, комплексы с железом (в ф-ле Я = Я = = Н, М = Ре, 2 = Ка, 2з-пл = 2 или 3) имеют зеленый цвет (соотв. пигмент зеленый или кислотный зеленый), с хромом (М = Сг, и = = 3)-оливковый, с кобальтом (М = Со, и = 3)-красио-коричневый, с никелем (М = N1, 2 = Ка, и = 2) и вдгнком (М = 2п, 2 = Ка, и = 2)-желтый разных оттенков. Наиб, практич. значение имеют комплексы с Ре (2 = Ка) пигмент зеленый, к-рый применяют в лакокрасочной и полиграфич. пром-сти, в произ-ве цветных карандашей, для крашения резин, пластмасс, обоев кислотный зеленый 4Ж (К = ЗОзКа, К = Н), используемый для крашения шерсти и шелка нитрозол А (Я = Н, К = СбНдКНСО), пригодный для крашения белого портландцемента в яркий зеленый цвет, устойчивый к действию света и воды. Водные р-ры кислотного зеленого 4Ж даже при разведении 1 300 ООО настолько интенсивно поглощают световые лучи красной видимой и ближней ИК частей спектра, преобразуя их в теплоту, что заметно ускоряется испарение воды под действием солнечных лучей. Благодаря этому ев-ву краситель используют для извлечения солей из воды морей и соленых озер. [c.273]

    Помимо ограничений, связанных с чувствительностью, т. е. минимальным количеством вещества, требуемого для получения информативного спектра, выбор объектов исследования, как правило, ограничен диамагнитными комплексонатами. Наличие у катиона неспаренного электрона не только не позволяет наблюдать ЯМР самого парамагнитного иона соответствующего изотопа, но и значительно уширяет линии ЯМР лиганда. Регистрация последних становится возможной лишь при высокой лабильности комплекса или при коротком времени электронной релаксации иона. Такие катионы, как гадоли-ний(П1), марганец(И), имеют большие времена релаксации (10 —10 9 с), и поэтому для них наблюдать ЯМР лиганда не удается. В какой-то мере этот недостаток может быть скомпенсирован использованием ЭПР-спектроскопии комплексов этих ионов. Напротив, такие катионы, как неодим (П1), европий(1П), никель(П), характеризуются короткими временами электронной релаксации (менее 10 с), что позволяет регистрировать спектры ЯМР лиганда. Спектры ЭПР в этих условиях имеют плохое качество. Таким образом, ЯМР и ЭПР спектроскопия [c.417]

    В качестве примеров получаемой при этом информации можно отметить работы по идентификации комплексов с кч 6 и 7 у гидроксиэтилэтилендиаминтриацетатов и этилендиаминтетраацетатов железа (П1) [825, 827], по обнаружению в растворе [ u(H20)H2eddiph] при комнатной температуре сверхтонкой структуры от двух атомов азота, являющейся прямым свидетельством образования связей Си—N [357], а также работы по регистрации нестабильного комплекса ЭДТА с никелем (П1) 8301 и фиксации образования биядерных комплексонатов 829]. Интересные данные о димеризации комплексонатов состава металл лиганд 1 1 были получены для замороженных растворов этилендиаминтетраацетата титана(1П) На основании появления в спектре ЭПР дополнительной линии за счет синглет-триплетного состояния был сделан вывод об образовании димера, оценено межатомное расстояние [831] Димеризация наблюдалась и у некоторых комплексонатов ванадила [829] Следует подчеркнуть, что в отличие от спектрофотомет-рии, когда для корректной интерпретации требуется привлечение дополнительной информации, в спектроскопии ЭПР вывод об образовании того или иного ассоциата вытекает непосредственно из анализа формы линии, числа компонентов и значения параметра расщепления [c.434]

    НИЯ в видимой и ближней инфракрасной областях спектра (рис. 9.5). При добавлении эквимолярных количеств Ы-(2-пири-дилметнл) мочевины или N-(2-пиридилметил) карбамата происходит небольшое, но характерное изменение спектра в соответствии с образованием октаэдрических комплексов Ni(H) с обоими лигандами. Спектральные характеристики растворов никеля (П) и его комплекса с К-(2-пиридилметил) мочевиной при 400 нм не изменяются в интервале концентраций 0,019— [c.243]

    Эти структуры гипотетичны, о возможности их существования свидетельствуют легкое кислотное деметаллирование и. характерные спектры ЭПР. Кроме ванадия и никеля такие комплексы могут образовывать медь, свинец, молибден и другие металлы. [c.297]

    Важное значение имеют методы, основанные на использовании серусодержащих органических реагентов. К их числу принадлежат рубеановодородная кислота и ее производные, ксантогенаты, диэтилдитиокарбаминаты и некоторые другие. Достоинство рубеановодородной кислоты состоит в высокой чувствительности реакции на кобальт — определение удается при содержании порядка сотых долей гамма-кобальта в 1 мл. С рубеановодородной кислотой малорастворимое соединение кобальта может быть удержано в растворе введением защитных коллоидов. Окращенные соединения образуют также катионы меди и никеля, тем не менее определение кобальта в присутствии этих катионов возможно, так как они поглощают свет в различных участках спектра. Аналогично можно определить кобальт в присутствии никеля и меди, действуя раствором диэтилдитиокарбамината натрия и экстрагируя образовавшиеся комплексы хлороформом оптическую плотность экстракта измеряют при различных длинах волн, что позволяет определить все три катиона без разделения. [c.134]

    Основной простетической группой, входящей в состав большинства протеинов и обнаруживающей при этом большое число парамагнитных взаимодействий, является порфирин и его производные. Порфирин образует хелатные комплексы с ионами металлов, такими, как железо, магний, цинк, никель, кобальт, медь и редкоземельные элементы. Важнейшим среди них является комплекс с железом - гем, который участвует не только в связывании с кислородом при образовании гемоглобина, но принимает участие также и в других реакциях, таких, как электронный транспорт цитохрома, в каталитических реакциях превращения Н2О2 или в реакциях оксидирования кислот жирного ряда в процессах, катализируемых присутствием пе-роксидазы. В этих комплексах ион железа в зависимости от стадии окисления или типа лигандов может быть либо диамагнитным, либо парамагнитным. Следовательно, имеются природные диамагнитные и парамагнитные комплексы одной и той же молекулы, при этом параметры ЯМР-спектров этих [c.122]

    На метод инфракрасной спектроскопии применительно к гетеро-циклическим азосоединениям возлагали очень большие надежды многие химики. Однако из-за сложности строения данных реагентов не всегда удается сделать однозначные отнесения полос спектров к колебаниям определенных групп. Наиболее детально изучены ИК-спектры о-ПАФ, ПАН-1, ПАН-2 и их комплексов с ионами Мп, Ni и Zn [560]. Например, ПАН-1 имеет полосы поглощения при 3050, 1620—1400, 1400-1100, 990, 900-400 и 400—200 однако на слабые полосы наиболее трудно идентифицируемой азогруппы в области 1620—1400 см - накладываются интенсивные полосы =N- и С—С-групп. Комплекс никеля сэтим реагентом имеет полосы при 1330 см ( >n=n), 245 и 225 (vm n), 622 и 430 см (v -o)  [c.33]


Смотреть страницы где упоминается термин Никеля комплексы спектры: [c.184]    [c.241]    [c.110]    [c.115]    [c.124]    [c.102]    [c.102]    [c.105]    [c.175]    [c.177]    [c.190]    [c.191]    [c.320]    [c.290]    [c.412]    [c.149]    [c.401]    [c.530]    [c.134]    [c.467]    [c.467]    [c.108]   
Абсолютная конфигурация комплексов металлов (1974) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Никеля комплексы

спектр комплексы



© 2025 chem21.info Реклама на сайте