Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная прививка

    Возможность ионной прививки винилхлорида почти не изучена. Имеется лишь сообщ,ение, что обработка волокна или формованных изделий из полимеров и сополимеров акрилонитрила гидроксиламином позволяет прививать на них в водной среде винилхлорид и ви-при использовании в качестве катализатора солей [c.418]

    По мере увеличения специфичности межмолекулярного взаимодействия возрастает его направленность. Это особенно важно при образовании пространственных комплексов с комплексообразующими ионами металлов, в частности с ионами u +. Эта особенность была использована в жидкостной хроматографии для разделения смесей оптических изомеров, в том числе аминокислот. В лекциях 4 и 5 были указаны два пути иммобилизации лигандов для этой цели. Один из них заключается в химической прививке лигандов, несущих комплексообразующий ион, к адсорбенту-носителю (см. схему 5.26). Такими лигандами могут служить азот аминогруппы и кислород карбоксильной группы. Так, например, в случае Ь-оксипролина  [c.330]


    Применение ионообменных смол. Белки в растворе в зависимости от их состава могут проявлять сродство к специально приготовленным матрицам, к которым они присоединяются и откуда могут отделяться при воздействии соответствующим реактивом. Взаимодействие с веществом матрицы осуществляется через посредство очень специфичного функционального участка молекулы. Эти участки можно поместить на материал-носитель путем прививки радикалов. К таким материалам в первую очередь относятся смолы, разновидности целлюлозы и кремнеземы, которые при прививке становятся ионообменниками. В соответствии с природой прививаемого радикала различают специфические обменники ионов слабых оснований, сильных катионов, ионов слабых кислот и сильных анионов. [c.446]

    Классификация химических реакций целлюлозы и других полисахаридов как органических соединений рассмотрена выше (см. 11.3.3). В химических превращениях целлюлозы наибольшее значение имеют реакции замещения и окисления. При химической деструкции преобладают гетеролитические (ионные) реакции. Гомолитические (свободнорадикальные) реакции идут в основном при физической деструкции, а также при действии окислителей и в процессах прививки к целлюлозе синтетических полимеров. [c.545]

    Если привитой полимер содержит функциональную группу, то получаемый в результате прививки продукт может быть использован в качестве сорбента. Функциональные группы, способные к ионному обмену, могут быть введены также в результате дальнейших химических превращений. [c.102]

    Прививка даже небольших количеств полиметилметакрилата или полистирола делает поверхность более однородной. Можно предположить, что при обработке в тлеющем разряде в результате бомбардировки поверхности политетрафторэтилена ионами и электронами происходит окисление поверхности пленки с образованием некоторого количества гидроперекисных групп. При нагревании пленки в мономере гидроперекисные группы распадаются с образованием свободных радикалов, которые инициируют процесс привитой полимеризации. Опыты, проведенные со стабилизированными мономерами, показали, что в присутствии гидрохинона реакция прививки не протекает. На основании этого можно сделать вывод о радикальном механизме этой реакции. Помимо этого, известно, что поверхности, обработанные в тлеющем разряде, обнаруживают явления электронной эмиссии. Можно предположить, что наряду с радикальным процессом прививки может идти процесс, стимулируемый центрами эмиссии. [c.518]


    Первый зарегистрированный пример применения ионного механизма дисперсионной полимеризации — анионная полимеризация стирола в гептане с использованием бутиллития в качестве инициатора [40]. Образующуюся дисперсию полистирола стабилизировали различными типами каучуков [полибутадиен, поли(бу-тадиен-со-стирол) и полиизопрен]. Позднее для этих целей использовали поли(этилен-со-пропилен), атактический полипропилен и натуральный каучук [41 ]. В случае каучуков, содержащих ненасыщенные группы, появляется возможность прививки растущего полистирола. Привитой сополимер, вероятно, функционирует как истинный стабилизатор для образующегося полимера. [c.241]

    Проблема выяснения путей стабилизации фрагментов деструкции очень сложна. Образующиеся активные частицы, радикальные или ионные, можно дезактивировать путем насыщения остатками воды, спиртов, различных загрязнений, комбинации и рекомбинации, передачи цепи, прививки на другие макромолекулярные цепи, диспропорционирования или, наконец, насыщения кислородом. [c.140]

    По аналогии с ранее упомянутыми методами в качестве исходных продуктов были использованы препараты целлюлозы (обладающие катионообменными свойствами), ионы металлов которых при взаимодействии с окислителями образуют активные центры прививки радикального типа. Так, при адсорбции кислот Льюиса, таких, как трехфтористый бор, на поверхности целлюлозы были получены катионные катализаторы. Взаимодействие гидроксильных групп целлюлозы и катализатора приводит к образованию активных центров для полимеризации ряда мономеров, например изобутилена и а-метилстирола [180]. Указанные мономеры были полимеризованы на поверхности бумаги и древесины при —80°. В этом случае, по-видимому, происходит отложение полимера внутри матрицы, а не прививка к основной целлюлозной цепи. [c.298]

    Мрад заметная прививка не имеет места. В присутствии воды, в которой пленка набухает, мономер может диффундировать, и количество привитого продукта существенно увеличивается. Возможно и инициирование прививки ионами молекулы воды, но первое объяснение (образо-, вание радикалов) кажется более логичным, особенно с учетом полученных в последнее время данных. [c.421]

    Привитые сополимеры образуются также при молекулярном или ионном взаимодействии функциональных групп полимеров различной химич. природы. Так, при пластикации поливинилхлорида с бутадиен-нитрильным или метилвинилпиридиновым каучуком в области темп-р 140—230 °С прививка происходит в результате [c.226]

    Получение. Для получения П. п. используют гл. обр. ионную полимеризацию и поликонденсацию. Исходные иономеры — альдегиды, кетоны, циклич. эфиры, фор-мали, ацетали, спирты, гликоли и др. Для синтеза высокомолекулярных продуктов наибольшее распространение получил метод катионной полимеризации. По анионному механизму полимеризуются только эпоксиды (см. Окисей органических полимеризация) и альдегиды (см. Альдегидов полимеризация). Полимеризация по радикальному механизму крайне затруднена из-за относительно высокой энергии гомолитического разрыва связи С—О. Известны лишь немногочисленные работы по синтезу полимеров и сополимеров путем прививки карбоцепных блоков к готовым полиэфирным цепям. [c.65]

    При добавке к смеси облученного ацетата целлюлозы с акрилонитрилом ионов Ре образуется окислительно-восстано-вительная система при этом радикалы ОН переводятся в анионы ОН и коэффициент прививки повышается до 0,8. [c.103]

    При действии на ПВХ нафтилинидов щелочных металлов (например, лития) был получен продукт, способный вызывать ионную полимеризацию акрилонитрила и метакрилонитрила с образованием привитых полимеров Описана ионная прививка ряда мономеров на ПВХ, содержащий эпоксидные группы " . Например, при полимеризации тетрагидрофурана, окисей этилена и пропилена в присутствии сополимера винилхлорида с глицндилметакрилатом образуются привитые сополимеры с боковыми полиэфирными цепями. [c.417]

    Комплексы полимерных лигандов. Особую группу многоядерных комплексов представляют комплексы полимерных лигандов. Они могут быть получены как непосредственным присоединением ионов металлов к растворимым полимерам, так и полимеризацией комплексов. Известны полимерные водорастворимые лиганды, имеющие функциональные группы, которые способны к координации поливиниловый спирт, поливинилпиридин, полиакриловая кислота. Разработано множество методов так называемой прививки — введения групп, способных к координации, — в структуру уже готовых полимеров, например полистирола. Так, прививают к бензольным кольцам этого полимера группу СНгС1  [c.136]

    Характер взаимод. твердых Н. с др. компонентами смесей [смачивание, адсорбция, адгезия, трение и(или) хим. р-ции] определяется гл. обр. составом Н. и структурой их пов-сти. Св-ва пов-сти зависят не только от природы и фазовоц структуры Н., но и от способа и условий их получения,-а также от обработки пов-сти. В последнем случае наиб, широко используют след. физ. и хим. методы адсорбционная, в т.ч. хемосорбционная, модификация с помощью ПАВ нанесение спец. покрытий (напр., защитных, эластичных) обработка окислителями или восстановителями создание на пов-сти функц. групп, прививка молекул, имплантация нейтральных атомов или ионов воздействие высокоэнергетич. излучений (электромагнитных, электронных, нейтронных) и электрич. разрядов. Важное значение имеют также общая или уд. величина пов-сти Н., ее дефектность и шероховатость. [c.168]


    В аморфных телах отсутствует трехмерная периодичность структуры и молекулы способны лишь к колебат. и небольшим вращат. движениям. Поэтому в стеклах (к-рыми м. б. чистые мономеры или их застеклованные р-ры) полимерные цепи не развиваются, несмотря на присутствие активных центров. При повышении т-ры в области перехода стекла в переохлажденную жидкость вязкость изменяется на 10-15 порядков. В этой области размягчения стекла (с изменением т-ры всего на неск. градусов) резко меняется характер хим. процесса стабилизированные в стекле радикалы приобретают трансляц. подвижность и начинают реагировать с мономером. Образуются л-мерные растущие радикалы, подвижность к-рых в вязкой переохлажденной жидкости настолько мала, что их встреча и рекомбинация практически не наблюдается. Между тем подача малых молекул мономера к таким растущим центрам происходит легко и наблюдается их практически безобрывный рост. Эта уникальная ситуация широко используется в разл. полимеризац. процессах (радикальная и ионная полимеризация, сополимеризация, прививка). [c.504]

    Реакции прививки можно осуществлять методами радикальной и ионной полимеризации, а также с помощью реакций конденсации или присоединения. Чаще всего применяют радикальную полимеризацию, инициируемую химическим, радиационным или механическим способами [125, 226]. Обычно используют реакцию передачи свободнорадикальной цепи. Инициирование осуществляют соединениями, легко распадающимися на свободные радикалы, например пероксидами. [c.399]

    Особое значение имеет механохимическое инициирование поли-меризационных процессов при диспергировании различных твердых тел металлов, солей, окислов, неметаллов и т. д. Возникающие при таком диспергировании активные центры (свободные радикалы, ионы, вакансии [65, 434] типа Р-центров, Р -центров, У-центров, в том числе и эмиттирующие электроны) способны в присутствии мономеров, полимеров или других реакционноспособных органических соединений. инициировать дальнейшие превращения этих компонентов по свободнорадикальному или иошому механизму. Такие превр.ащеняя приводят к образованию полимеров, сополимеров, металлоорганических соединений, органоминеральных сополимеров, продуктов прививки полимеров на поверхностях твердых тел, наполнителей и т. д. [c.173]

    Образование химических связей между поверхностью наполнителя и полимером возможно и при использовании дисперсных на-полиителей, обработанных аппретами. Так, методом ИК-спектроскопии была обнаружена прививка полиэтилена на кварцевый наполнитель, обработанный у минопропилтриэтоксисиланом [488]. Возможность образования между минеральными дисперсными наполнителями и некоторыми полимерами водородных, ионных и координационных связей была установлена методом ИК-спектроскопии по смещению полос поглощения групп КН, СО и ОН полимеров [489]. Аппретирование дисперсных наполнителей влияет и на структурообразование, например ПЭ [487]. Химическое взаимодействие смолы с аппретом, который уже связан химическими связями с поверхностью волокна, может способствовать также улучшению совместимости компонентов в наполненной системе [490]. [c.257]

    Механизм, включающий образование полимерного карбоний-иона в результате реакции (С2Нв)2А1С1 и ПВХ и присоединение карбоний-иона по двойной связи i ii -l,4-полибутадиена, оказался приемлемым и для реакции прививки полимера к полимеру. Реакция прививки мономера к полимеру может заключаться в полимеризации бутадиена, инициируемой полимерным карбоний-ионом, йли во взаимодействии полибутадиена, получаемого in situ, и полимерного карбоний-иона. [c.244]

    Роговин и сотрудники [751, 752] разработали новый способ прививки винильных мономеров к целлюлозе. Он заключается во введении небольшого количества ароматических групп действием кислого сернокислого эфира 4-(Р-оксиэтилсульфопил) анилина на целлюлозу, последующем диазотировании аминогруппы и разложении диазосоединения в мягких условиях в присутствии ионов двухвалентного железа  [c.149]

    Целлюлоза адсорбирует иоееы двухвалентного железа из раствора его солей. В результате реакции этой целлюлозы с мономером в присутствии перекиси водорода получают привитой сополимер [146]. Поскольку при взаимодействии ионов двухвалентного железа с перекисью водорода образуются гидроксильные радикалы [уравнение (34)], последние, по-видимому, отрывают атом водорода от молекулы целлюлозы, в результате чего возникают активные центры прививки [c.289]

    Выяснение механизма инициирования прививки к природным волокнам представляет очень трудную задачу из-за наличия в них большого числа потенциальных точек прививки. Например, атака молекулы целлюлозы гидроксильными радикалами или ион-радикалами 80 , образующимися из персульфата, может протекать по любому из углеродных атомов ангидроглюкозных звеньев или по всем этим атомам. [c.354]

    Прививка стирола на тройном сополимере, полученном из бутадиена, а-метилстирола и метил-, этил- или изопропилвини-лового эфира, достигается полимеризацией стирола в водной дисперсии указанного тройного сополимера в присутствии Попытки получить привитой сополимер ионной полимеризацией винилбутилового или винилэтилового эфира со стиролом дали отрицательный результат [442, 443]. [c.450]

    Сополимеры стирола обладают улучшенными физико-механическими свойствами по уравнению с гомополим-ером, и поэтому вопросам сополимеризации стирола с различными винильными мономерами (производными стирола, ненасыщенными кислотами и их эфирами, акрилонитрилом) уделяется большое внимание. Широкое распрострапение в последние годы получила модификация свойств полистирола путем прививки к нему других полимеров, а также обработка полимера сшивающими агентами и каучуками. Свойствам, методам получения и переработки сополимеров стирола посвящены обзоры Сополимеризация стирола с его производными б °з-5718 осуществляется так же, как гомополимеризация этих мономеров — радикальным и ионным путем. [c.332]

    Систематические исследования процесса механохимической привитой полимеризации мономеров на различных твердых поверхностях [383] позволили установить ряд общих закономерностей, на основе которых предложен механизм процесса прививки. Прививка осуществлялась в процессе диспергирования грубодисперсных порошков (карбонат кальция, сульфат бария, ионные монокристаллы Na I, LiF, СаРг оксиды магния и железа, графит, аморфные стекла, кварц, металлы, полимеры) в вибромельнице в присутствии мономера на воздухе или на порошках и сколах монокристаллов, получаемых на воздухе или в аргоне, с последующим совмещением образца с мономером (стирол, метилметакрилат). При этом было установлено, что степень прививки количественно зависит от природы поверхности, а сам процесс прививки не обнаруживает специфичности и протекает на различных по структуре и химическим связям поверхностях твердых тел. Образование наряду с привитым полимером гомополимера не связано с полимеризацией, а является следствием отрыва и перехода в раствор части слоя сформировавшихся привитых макромолекул. Некоторая часть гомополимера может образоваться в результате радиационного воздействия электронной эмиссии, проявляющейся лишь при диспергировании наполнителя непосредственно в присутствии мономера. Пост-эффект в инициировании полимеризации сохраняется в течение длительного времени, на несколько порядков превышающего продолжительность эмитирования электронов. [c.218]


Смотреть страницы где упоминается термин Ионная прививка: [c.416]    [c.309]    [c.505]    [c.99]    [c.62]    [c.518]    [c.133]    [c.99]    [c.99]    [c.230]    [c.208]    [c.172]    [c.100]    [c.100]    [c.435]    [c.432]    [c.84]    [c.100]    [c.100]    [c.428]   
Смотреть главы в:

Получение и свойства поливинилхлорида -> Ионная прививка


Получение и свойства поливинилхлорида (1968) -- [ c.416 ]




ПОИСК





Смотрите так же термины и статьи:

Прививка



© 2024 chem21.info Реклама на сайте