Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование кинетики радикальных реакций методом ЯМР

    Исследование кинетики радикальных реакций методом ЯМР [c.404]

    С 1956 г. под руководством И. В. Березина группа сотрудников кафедры химической кинетики МГУ приступила к исследованию элементарных радикальных реакций в жидкой фазе методом меченых атомов. [c.42]

    Нам представляется, что изложенные данные и их обсуждение показывают плодотворность постановки исследований кинетики молекулярного разрушения прямыми методами. До недавнего времени о столь глубокой детализации явления механического разрушения не могло быть и речи. Именно изучение кинетики разрушения подняло целый ряд тонких вопросов поведения и разрыва напряженных макромолекул. И хотя в настоящее время нет окончательного решения вопроса об истинном смысле величины Цд и здесь продолжается конкуренция между разными гипотезами ( слабые связи , нелинейные перенапряжения, цепные реакции (свободно-радикальные или энергетические), межмолекулярные перегруппировки и т. д.), тем не менее есть все основания надеяться, что с помощью прямых методов исследования в ближайшем будущем этот вопрос будет полностью решен. [c.267]


    Все эти методы и возможности в настоящий момент далеко не исчерпаны. Исследование в скрещенных атомно-молекулярных пучках, распространение импульсной спектроскопии на новые области спектра, создание новых, еще более совершенных радикальных масс-спектрометров с магнитной модуляцией, повышение чувствительности спектрометров ЭПР и проведение исследований времени релаксации, использование ядерного магнитного резонанса для измерения слабых взаимодействий свободных радикалов со средой, развитие хроматографии для детального изучения кинетики накопления продуктов радикальных реакций — таков далеко не полный список новых путей подхода к исследованию радикалов. Вопрос же о роли радикалов в биологических процессах еще по-настоящему даже не поставлен. [c.24]

    В недалеком будущем основное внимание будет уделяться не анализу отдельных реакций, а принципиальным экспериментам, необходимым для выяснения общего механизма гетерогенных реакций. Несомненно, что путь к овладению гетерогенной кинетикой лежит через многочисленные исследования самых разнообразных явлений. И это не удивительно. Достаточно вспомнить, какой ценой был выяснен механизм реакций с участием радикалов и найдены методы их практического использования (например, окисление в перекисные соединения). Кинетический анализ реакции синтеза бромистого водорода потребовал от Боденштейна, его сотрудников и их конкурентов 30 лет работы. Лишь спустя 15 лет после начала исследований они научились уверенно выявлять и измерять основные параметры радикальных реакций. Такие усилия будут оправданы и в случае гетерогенных реакций. Перспективы гетерогенной кинетики выходят далеко за рамки механизма самих явлений. [c.458]

    Методика исследования реакций ионной полимеризации нередко совпадает с методикой изучения радикальной полимеризации. Наиболее распространенные методы дилатометрического и гравиметрического изучения кинетики радикальной полимеризации [c.41]

    Приведены результаты исследования механизма и кинетики реакции некоторых фенолов с озоном, выполненные с привлечением спектральных методов я тонкослойной хроматографии. Определен состав продуктов реакции озона с пространственно-затруд-ненными фенолами и измерены константы скорости реакции. Показано, что реакция протекает по свободно-радикальному механизму, главными промежуточными продуктами процесса являются фенокси-льные радикалы. [c.330]


    Исследование кинетики в стационарном состоянии всегда приводит к отношениям констант скоростей в случае бимолекулярного обрыва и kpl ко в случае мономолекулярного. Входящие в отношения величины можно определить раздельно, если оказывается возможным исследование скорости реакции в нестационарных условиях, в период установления стационарного состояния в начале реакции или в период замедления, когда процесс инициирования прекращается. Чтобы исследовать эти эффекты, необходимо иметь возможность прерывать и возобновлять процесс инициирования. Это можно сделать только при фотоинициировании, и, таким образом, этот метод ограничивается радикальной нолимеризацией. Теоретические аспекты измерений в нестационарном состоянии были подробно обсуждены в работе 185]. [c.113]

    Таким образом, исследование даже общей кинетики радикальной полимеризации при глубоких степенях превращения позволяет оценивать реакционную способность малореакционноспособных соединений в радикальных реакциях. Последнее в ряде случаев недоступно для других методов. [c.210]

    Другие советские исследователи (главным образом, в Физико-техническом институте АН СССР им. А. Ф. Иоффе) выполнили ряд исследований в этой области. С помощью метода малоуглового рентгеновского рассеяния изучена кинетика образования микротрещин при нагружении и долговечность [1003]. Эта техника также была использована для измерения размеров трещин в растянутом полиамиде [10661. Образец был освобожден от нагрузки и затем вновь нагружался. Каждое новое нагружение дает различную временную зависимость образования радикалов. Это приводит к предположению о том, что разрывы связи необратимы из-за быстрого превращения образовавшихся радикалов во вторичные радикалы, которые затем дезактивируются при взаимодействии с активными центрами цепи, достаточно удаленными, чтобы препятствовать прямой рекомбинации. Изучали альдегидные группы, образующиеся при радикальных реакциях, сопровождающих процесс деструкции. Советские ученые применили концепцию цепных радикальных реакций для объяснения кинетики макромо-лекулярного разрыва в напряженном полимере [1063, 1067]. Для исследования кинетики распада полиолефинов измеряли изменение интенсивности характерных полос поглощения в ИК-спектре [423, 424, 802, 862, 994, 1121]. При различных температурах и напряжениях соотношение между концентрацией образующихся групп и продуктами распада постоянно для данного типа образцов. При этом опять обнаружена экспоненциальная зависимость между напряжением и скоростью образования альдегидных групп. Реакция описывается уравнением первого порядка [1121]. В других публикациях сообщалось о влиянии температуры [1002, 1134, 1218], ориентации [1134, 12181, характера надмолекулярной структуры [423] и степени вытяжки [154, 423] на процесс разрушения. [c.309]

    Широкие возможности для наблюдения активных радикалов, образующихся в радикальных жидкофазных реакциях, в том числе в процессе полимеризации, открывает метод спиновых ловушек [43]. Кинетика накопления аддуктов и вид их спектров ЭПР позволяет определить скорости инициирования, константы скорости и направление присоединения инициирующих радикалов к мономерам при гомо- и сополимеризации. Метод спиновой ловушки может быть также использован для исследования механизма и кинетики элементарных актов реакции радикалов с полимерами, реакций ингибирования, а>-полимеризации. [c.289]

    Флэш-фотолиз широко применяют для идентификации радикалов, изучения спектров и химических превращений радикалов, но особенно для исследования кинетики радикальных реакций. Кроме того, данный метод позволяет изучать нерадикальные промежуточные продукты, например молекулы в триплетных возбужденных состояниях. Матсон и Дорфман [52], а также Мак-Карти и Мак-Лечлен [53] видоизменили флэш-фотолиз, заменив освещение облучением мощными импульсами электронов от ускорителя. В настоящее время такой импульсный радиолиз начинает исполь- [c.170]

    За последние годы разработана теория и предприняты некоторые практические шаги в применении ЯМР для исследования кинетики радикальных реакций, в частности реакций электронного обмена и радикального замещения, протекающих с переносом атома водорода [76] (см. гл. IX, 1). Привлекательносгь применения метода ЯМР для этих целей состоит в возможности изучать бы-стропротекающие реакции = 10 4-10 л/(моль-с)] и, что наиболее существенно, исследовать кинетику реакций, протекающих с нулевым тепловым эффектом, т. е. элементарных реакций с одинаковыми исходными и конечными состояниями. Классическими методами кинетику таких реакций изучать чрезвычайно трудно, а для теории реакционной способности наибольший интерес представляют именно эти реакции. [c.404]


    Дальнейшим развитием простого метода измерения констант скоростей атомарных реакций стал метод исследования реакций с участием небольших радикалов в основных состояниях. Эта перспективная область исследований была открыта после проведения ряда работ по изучению реакций гидроксильных радикалов [187, 188]. Источником свободных радикалов обычно является быстрая реакция между атомарными частицами и добавляемыми в смесь реагентами кинетику радикальных реакций можно исследовать по изменению концентраций реагентов в зависимости от длины реакционной трубки. Применимость этого метода зависит не только от выбора подходящих быстрых реакций, в которых образуются радикалы, но и от разработки чувствительных методик измерения их концентраций. В течение последних лет с помощью струевых разрядных установок проведены кинетические исследования реакций ряда короткоживущих радикалов ОН, N, СЮ, ВгО, F0, SO, N I2 и молекулы HNO. Механизмы и константы скоростей радикальных реакций, установленные и измеренные в некоторых исследованиях, уже стали весьма широко использоваться при интерпретации сложных реакций с участием этих радикалов [6]. [c.292]

    Были изучены два процесса с различной кинетикой радикальная реакция окислительного распада ди-трет.бутилперекиси (ДТБП) и цепная реакция окисления ацетальдегида, инициированного распадом ДТБП. Методы использования величины акс в качестве кинетической характеристики реакции, разработанные на примере этих двух процессов, могут найти применение в кинетических исследованиях различных реакций окисления. [c.278]

    Исследования влияния среды на протекание реакций с участием свободных радикалов начали особенно интенсивно развиваться лищь в последнее десятилетие в связи с развитием и усоверщен-ствованием новых физических методов исследования, позволяющих непосредственно следить за появлением или исчезновением в системе свободных радикалов. В первую очередь, следует указать на радиоспектроскопические и хемилюминесцентные методы исследования кинетики радикальных реакц1 п. Появилась возможность находить константы скорости элементарных реакций весьма сложных химических процессов, протекающих с участием радикалов. [c.352]

    Первая работа, где рассматривается кинетика частиц в ПРМ, была выполнена в 1942 г. Уэйландом [1021. Уэйланд разработал метод кинетического исследования радикальных, нуклеофильных и электрофильных реакций замещения с бензолом. Этот метод получил в настоящее время широкое распространение при исследовании [c.61]

    В четвертой главе рассматриваются реакции крекинга углеводородов, в пятой — применение метода для изучения механизма газофазного окисления углеводородов. Шестая глава посвящена применению метода в одной из трудных и интересных областей химической кинетики — исследованию конкуренции радикальных реакций. В седьмой и восьмой главах рассматриваются проблемы жидкофазного окисления углеводородов и каталитические процессы. Среди каталитических основное внимание уделено гетерогенным реакциям дегидрироЕ1ания и дегидратации. Девятая глава (написана венгерским ученым доктором Ласло Лацковичем) посвящена применению кинетического изотопного метода при изучении биохимических процессов. [c.6]

    Одним из наиболее интересных аспектов использования ЭПР в химии является возможность изучения кинетики реакций свободных радикалов в конденсированной фазе и определения 1 онстант скоростей элементарных реакций. К 1957—1958 гг. метод ЭПР стал уже распространенным методом идентификации и изучения строения свободных радикалов в жидкой и твердой фазах, однако он практически не использовался для проведения количественных кинетических экспериментов. В это время по инициативе В. В. Воеводского было поставлено исследование скорости диссоциации гексафенилэтана на трифенилметиль-ные радикалы [1] и проведен цикл исследований реакций свободных радикалов в облученном политетрафторэтилене (тефлоне). Результаты этих пионерских исследований публикуются в настоящей главе. Смысл этих работ заключается не только в количественном определении ряда элементарных констант скоростей реакций фтор алкильного радикала, теплоты распада перекисного радикала, коэффициента диффузии кислорода и т. д., но главным образом в демонстрации возможностей применения ЭПР для количественных кинетических измерений и в разработке методики анализа экспериментальных данных. Публикуемые здесь первые работы по изучению кинетики радикальных реакций в твердой фазе стимулировали дальнейшие иоследования учеников и сотрудников В. В. Воеводского, в которых были изучены специальные классы радикальных реакций [2, 3], построена кинетическая теория радикальных реакций в твердой фазе [4], начато прямое исследование клеточного эффекта [5] и проблемы пространственного распределения радикалов в твердых матрицах [6, 7]. Несомненно, что эти работы оказали также немалое влияние и на другие многочисленные исследования элементарных реакций в конденсированной фазе, выполненные или ведущиеся в Советском Союзе и за рубежом. В результате определения констант скоростей реакций рекомбинации фторалкильных и перекисных радикалов в публикуемых здесь работах В. В. Воеводского был поставлен принципальный вопрос о природе компенсационного эффекта (КЭФ), т. е. о причинах наблюдения аномально больших энергий активаций Е и предэкспоненциальных множителей ко, связанных между собой зависимостью типа ко=А+ВЕ. В. В. Воеводским было высказано предположение, что КЭФ наблюдается в результате того, что зависимость к от температуры не является аррениусовской Е падает с ростом температуры), но это отклонение не может быть замечено в обычных экспериментах. Позднее учениками В. В. Воеводского были прове- [c.250]

    Так как на гель-хроматограммах отражаются все изменения ММР, связанные с глубиной полимеризации, метод может быть использован для исследования кинетики реакций, протекающих по радикальному или ионному механизму. При этом либо устанавливают взаимосвязи между молекулярными характеристиками и свойствами полимера, либо определяют вид кинетической схемы полимеризации и вычисляют констарггы элементарных реакций. В этой связи применение нашли два основных метода исследования  [c.114]

    Использование импульсного электронного излучения позволяет в ряде случаев более детально исследовать кинетику радиационных процессов и идентифицировать некоторые промежуточные продукты, образующиеся при радиолизе различных систем. Обусловлено это тем, что в результате действия импуль-. сов электронов на ту или иную систему некоторые радикальные продукты возникают в концентрациях, достаточных для их идентификации методами абсорбционной спектроскопии. В главе II (см. стр. 40) уже были рассмотрены методы определения концентрации продуктов радиационных реакций непосредственно во время действия импульсного излучения. Здесь кратко излагаются результаты подобных исследований в области радиационной химии водных растворов. [c.131]

    Первые количественные работы, в которых для исследования механизма радиационно-химических реакций в водных растворах использовалось интенсивное импульсное излучение, были опубликованы всего лишь несколько лет тому назад, когда появились мош,ные источники этого вида радиации — линейные электронные ускорители. И сразу же эти работы привлекли к себе пристальное внимание радиационных химиков. Это — не удивительно. Импульсное излучение в сочетании с современными аналитическими методами позволяет идентифицировать короткожи-вущие промежуточные продукты радиолиза и определять прямым путем абсолютные константы скорости реакций с их участием. Подобные сведения, несомненно, весьма ценны с точки зрения механизма химического действия ионизирующего излучения и кинетики быстрых радикальных реакций. Обобщению экспериментальных результатов, накопленных в этой области, и посвящена настоящая работа. [c.3]

    Кинетика полимеризации при различных температурах изучена в [311, 312], а в работе [317] продемонстрированы возможности использования люминесцентного метода исследования. В силу своей высокой чувствительности этот метод позволяет исследовать кинетику начальных стадий полимеризации, когда отношение концентраций образовавшегося полимера и мономера еще мало и можно пренебречь процессами, приводящими к явлению так называемого запределивания полимерной цепи. В работе [313] для ряда кристаллических мономеров обнаружена радикальная реакция зарождения полимерной цепи и присоединения молекул мономера при 77 К под действием ионизирующей радиации. Наиболее важным, с нашей точки зрения, является установленный авторами экспериментальный факт, что реакция роста полимерной цепи происходит только во время действия излучения. По нашему мнению, это указывает на особую роль излучения в процессах, происходящих в твердых образцах, которая заключается, в частности, в сильном изменении физико-химических свойств среды. [c.79]

    Небольшая по объему монография Г. Эвери Основы кинетики и механизмы химических реакций в сжатой и доступной форме излагает начала современной химической кинетики формальную кинетику, экспериментальные методы определения скоростей реакций, различные теоретические представления. В книге также рассмотрены радикально-цепные процессы, гомогенный, гетерогенный, ферментативный катализ, фотохимические реакции, методы исследования быстрых реакций. [c.4]

    В последнее десятилетие стало ясно, что исследования формальной кинетики дают мало сведений о газофазном окислении углеводородов. Были развиты новые экспериментальные методы (включая газовую хроматографию, ЭПР и ЯМР измерения, изотопные методики), представляющие широкие возможности для выяснения конкретных механизмов реакций. Упомянутые выше методы используются двумя способами один из них ваключается в аналитическом определении промежуточных и конечных продуктов (см., например, [2]), другой — состоит в изучении отдельных элементарных стадий (радикальных реакций, реакций между атомами и молекулами) независимо от всей сложной реакции (см., например, [3]). Применение КИМ дает возможность объединить эти два пути с помощью аналитических измерений в этом методе получают данные об элементарных стадиях. [c.60]

    А. Д. Степуховичем [40] были проведены теоретические исследования кинетики и термодинамики реакций алкильных и других радикалов. Был разработан приближенный метод расчета стерических факторов бимолекулярных простых и радикальных реакций на основе метода переходного состояния и полуэмпирического классического метода столкновений. Новый метод был применен к различным реакциям радикалов с алканами и непредельными углеводородами. В результате [c.27]

    По значимости среди химико-сиптетических вопросов проблеме теломеризации принадлежит одно из важных мест как с точки зрения теории, так и по возможностям практического использования. Непосредственно к теломеризации примыкают и в ряде случаев сливаются с нею вопросы гомолитических пе регруппи ровок в жидкой фазе. В данной статье будут рассмотрены лишь исследования в области теломеризации (радикальной и ионной). О работах в области кинетики и механизма цепных радикальных реакций, по изучению свойств радикалов в газовой фазе, исследованию стабильных радикалов, радика-лообразования, о работах в области физических методов исследования свободных радикалов и т. д. будет сказано в других статьях данной монографии. [c.304]

    Кинетика и механизм термолиза пероксидов в растворе очень чувствительны к свойствам среды, наличию примесей, исходной концентрации и к другим факторам. Поэтому важно при изучении гомолиза в растворе соблюдение одинаковых условий проведения распада и оценки радика-лообразования. В связи с изучением ингибиторов радикальных процессов для оценки акцепторной способности ингибиторов были разработаны различные модельные системы, опирающиеся на реакции автоокисления, полимеризации и др. [120, 121]. Согласно Денисову [58], основные кинетические методы исследования реакций распада молекул на радикалы включают  [c.38]

    В последние годы снова появились работы канадских, английских и французских исследователей [19], в которых на основании широкого применения методов газовой хроматографии, масс-спектрометрического анализа и других совершенных методов ис следований изучался состав продуктов и кинетика первичного крекинга при низких давлениях (10—150 мм рт. ст.) в интервале 400—600° С. Эти работы снова подтверждают радикально-ценной механизм первичного термического крекинга кроме того, в них рассчитываются скорости некоторых элементарных реакций, протекающих с участием радикалов и, в частности, подчеркивается важная роль этильных радикалов при определении кинетических характеристик крекинга алканов, на что указывалось еще в работах Фроста в 40-е годы [20]. Французские исследователи дискутируют с Воеводским по поводу выдвинутой им концепции гетерогенного зарождения, возрая ая против заметного влияния стенок на зарождение цепей в термическом крекинге. Ниже мы обсудим результаты проведенных нами исследований, показавших, что рост гетерогенного фактора (б /у) увеличивает обрыв цепей, но мало влияет па их зарождение. [c.344]

    Использование метода стационарных концентраций позволяет заменить дифференциальные уравнения для радикальных нродуктов простыми алгебраическими соотношениями и построить приближенное решение сложной системы кинетических уравнений. Поэтому исследования в условиях стационарного облучения широко используются с целью установления конечного результата радиационно-химического процесса и построения на этой основе количественной схемы его протекания, отображающей соотношение скоростей различных простых реакций. Однако построение адекватной математической модели требует знания природы и кинетических характеристик активных короткоживу-щих частиц и направлепности процессов взаимодействия, в которых они могут участвовать. Часто приближенное представление о них можно получить, исходя из общих соо-бражений и данных по кинетике радиационно-химических превращений. [c.44]

    II др.), а также методы измерения активности антиокислителей и катализаторов кинетики расиада и э( )-фективности инициаторов радикальной полимеризации и окисления. Измерения X. нсиользуют и в исследованиях механизма и кинетики различных процессов (обнаружение промежуточных продуктов, определение скоростей химпч. превращения, относительных и абсолютных концентраций атомов и свободных радикалов, относительных и абсолютных значении констант скорости элементарных реакций, изучение процессов передачи энергии). Корреляцию между интенсивностью X. и скоростью реакции можно использовать в целях контроля промышленных химико-тех-нологич. процессов. [c.312]

    Область электрофильного замещения у насыщенного атома углерода значительно моложе своего антипода — нуклеофиль-вого замещения в жирном ряду. Начало исследований в этой области относится к 1957 г., когда появились первые работы по стереохимии и кинетике, направленные на изучение механизма электрофильного замещения. Причина столь позднего развития состояла прежде всего в трудности подбора подходящих объектов, так как в ряду алканов реакции с обычными электрофильными агентами либо не осуществлялись, либо имели радикальную природу. Однако после преодоления трудностей, связанных с подбором объектов, и по мере развития экспериментальной техники, и лрежде всего физико-химических методов исследования, исследование этой области стало проводиться огромными темпами, а благодаря усилиям ряда школ и лабораторий во всем мире (особенно в СССР, США, Англии и Бельгии) в настоящее время накоплен большой экспериментальный материал, позволяющий сделать определенные обобщения. Основополагающие работы в этой области выполнены С. Уинстейном, О. А. Реутовым, К. Ингольдом, Г. Насельским, Р. Десси, Ф. Дженсеном и их сотрудниками. [c.5]

    Для описания магнитных и спиновых эффектов в реко-мбинации радикалов необходимы сведения двоякого рода. С одной стороны, надо знать динамику молекулярного движения реагентов в реакционной зоне, с другой — динамику спинов реагентов. Молекулярная динамика реагентов в растворе довольно подробно исследована в традиционной, бесспиновой, теории рекомбинации радикалов. Динамика спинов радикалов поддается весьма полному описанию методами, развитыми для описания явления электронного парамагнитного резонанса (ЭПР). Таким образом, учение о спиновых и магнитных эффектах в рекомбинации радикалов развивается в области пересечения химической кинетики и ЭПР. Каждая из этих областей науки хорошо разработана, и это создало возможности для форсированных исследований магнитных и спиновых эффектов в радикальных химических реакциях. [c.6]

    Наряду с методами электрохимии все большее значение в исследовании промежуточных частиц приобретают другие, не электрохимические методы. В 1975 г., открывая V Всесоюзное совещание по электрохимии, академик А. Н. Фрумкин указал на необходимость использования для изучения кинетики и механизма электродных реакций неэлектрохимических, в частности оптических, методов. Для обнаружения и идентификации промежуточных частиц в электрохимических процессах, реакционная способность которых меняется в широких пределах, кроме таких методов, как циклическая вольтамперометрии, метод вращающегося дискового электрода с кольцом, коммутаторная полярография и т. п., используют пеэлектрохимические методы, получившие развитие сравнительно недавно. Они основаны на сочетании различных физических методов с электрохимией. Помимо таких традиционных методов, как ЭПР-спектроскопия, позволяющих идентифицировать в основном частицы радикальной природы, определенный интерес представляет сочетание ЯМР-снектроско-пии и масс-спектрометрии с электрохимическими методами. Особого внимания заслуживают спектроэлектрохимические методы, базирующиеся на современных достижениях спектроскопии высокого разрешения и применяющие различные типы оптически прозрачных и непрозрачных электродов. [c.4]


Смотреть страницы где упоминается термин Исследование кинетики радикальных реакций методом ЯМР: [c.96]    [c.136]    [c.375]    [c.569]    [c.426]    [c.22]    [c.36]    [c.254]   
Смотреть главы в:

Стабильные радикалы электронное строение, реакционная способность и применение -> Исследование кинетики радикальных реакций методом ЯМР




ПОИСК





Смотрите так же термины и статьи:

Исследование кинетики

Радикальные реакции

Реакция исследование



© 2025 chem21.info Реклама на сайте