Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрокапиллярная кривая ионов

    Если поверхностно-активное вещество не проявляет заметно ионогенных свойств, то оно будет лучше адсорбироваться на слабо заряженных поверхностях, т. е. вблизи точки нулевого заряда, где больше поверхностное натяжение. Это связано с тем, что именно при этих условиях в результате адсорбции произойдет наибольшее уменьшение энергии Гиббса поверхностного слоя. Экспериментальные данные полностью подтверждают этот вывод (рис. И. 11). Максимум электрокапиллярной кривой в присутствии ПАВ снижается, становится менее четким, но не сдвигается ио оси потенциала. Такая закономерность позволяет использовать метод, основанный на адсорбции неионогенных ПАВ, для нахождения точки нулевого заряда. Ионогенные вещества, ионы которых значительно отличаются по поверхностной активности, могут сдвигать точку нулевого заряда в ту или иную сторону по оси потенциала. Например, анионы 0Н , ЗО , СО3 , НРО не являются поверхностно-активными на границе вода — ртуть (они сильно гидратированы и к ртути не имеют специфического сродства) и поэтому [c.52]


    Чтобы получить электрокапиллярные кривые, можно применять ртутный электрод, так как ртуть при соприкосновении с раствором заряжается положительно. На границе ртуть — раствор возникает двойной электрический слой поверхностное натяжение уменьшается за счет электростатического отталкивания зарядов. Если положительный заряд ртути постепенно уменьшать, то поверхностное натяжение возрастает и при заряде, равном нулю, достигает максимума. Если далее придавать поверхности ртути отрицательный заряд и постепенно увеличивать его абсолютную величину, то поверхностное натяжение начнет снижаться. Эту зависимость выражают в виде электрокапиллярных кривых (рис. 51). Форма электрокапиллярных кривых и потенциал нулевого заряда яо определяются составом раствора, особенно наличием в нем ионов, способных адсорбироваться на поверхности электрода и образовывать двойной электрический слой или же вызывать изменение его структуры. Так, адсорбционный двойной электрический слой обусловливает определенные скачки потенциалов яо при отсутствии заряда электрода. При адсорбции катионов потенциал нулевого заряда Яо более положителен, чем потенциал нулевого заряда Яо,раствора в отсутствие катионов. Наоборот, адсорбция анионов смещает потенциал нулевого заряда яо" в область более отрицательных значений. [c.171]

    Учитывая, что поверхностно-активные ионы влияют на положение максимума электрокапиллярной кривой или на потенциал незаряженной поверхности (Ue=o), вызывая смещение к более положительным или более отрицательным значениям, величина не является константой, характерной для данного электрода. Один и тот же электрод может иметь несколько в зависимости от природы и концентрации веществ, присутствующих в растворе. [c.105]

    Как видно из уравнения (25), величина заряда ионной обкладки двойного слоя, находящейся в жидкости, по теории Штерна состоит из двух слагаемых, из которых одно выражает заряд адсорбированных ионов, а другое — заряд ионов, притянутых к поверхности только электростатическими силами. Как было показано Штерном, рассчитанные по этому уравнению емкости двойного слоя для широкого интервала концентраций электролита из данных по электрокапиллярным кривым дают весьма удовлетворительное совпадение с экспериментом. [c.44]

    Однако, чтобы величина / действительно выражала заряд металлической обкладки двойного слоя, надо предположить, что заряд ионов не меняется в процессе их адсорбции. Если это условие не выполняется, то, например, при потенциале максимума электрокапиллярной кривой на поверхности будет некоторый заряд, зависящий от степени переноса заряда адсорбированного иона. Так, если при адсорбции анионов на ртути происходит образование ковалентной связи, то это означает, что заряд иона частично переносится на поверхность металла. Однако на ртутном электроде перенос заряда не учитывается, а определение заряда по уравнению (15.1) следует признать в первом приближении удовлетворительным..  [c.70]


    Чтобы избежать этого приближенного допущения, необходимо использовать при измерении электрокапиллярных кривых цепи без переноса, в которых электрод сравнения обратим по одному из ионов исследуемого электролита. Как показывает сопоставление точного и приближенного методов расчета адсорбции ионов, уравнение (VII.21) с достаточно хорошей точностью можно применять вплоть до концентраций <1 моль/л. [c.152]

    Модельные представления о строении двойного слоя на границе электрод — раствор развивались в течение длительного времени. Первая работа относится к 1853 г., когда Г. Гельмгольц для описания границы между электродом и раствором предложил модель плоского конденсатора. Согласно теории Гельмгольца, к слою зарядов на металле жестко притянуты ионы противоположного знака, так что двойной слой представляет собой своеобразный плоский конденсатор с очень малым расстоянием между его обкладками (порядка диаметра молекулы воды). Эта теория предсказывала правильные по порядку величины емкости двойного слоя, объясняла форму электрокапиллярных кривых, но не могла объяснить зависимости емкости и пограничного натяжения от концентрации электролита и температуры. [c.162]

Рис. 3.11. Влияние адсорбции поверхностно-активных ионов на форму электрокапиллярной кривой ртутного электрода Рис. 3.11. <a href="/info/527618">Влияние адсорбции поверхностно</a>-<a href="/info/5076">активных ионов</a> на форму <a href="/info/769179">электрокапиллярной кривой ртутного</a> электрода
    Весьма существенную информацию можно получить из сопоставления поверхностной активности органических веществ на границах раздела электрод/раствор и раствор/воздух. Поскольку свободная поверхность раствора не несет избыточного заряда ионов какого-либо знака, то изотермы двумерного давления на границе раствор/воздух следует сопоставлять с Дст, Ig Сд-кривыми, построенными при условии q = 0 (значения сто и ст должны соответствовать потенциалам нулевого заряда). В случае жидких электродов необходимые для такого построения электрокапиллярные кривые обычно снимают непосредственно, а в случае твердых электродов используют Дст, -кривые, полученные путем двухкратного обратного интегрирования кривых дифференциальной емкости (см. гл. 1). [c.41]

    С1"<Вг < 1 . Эту закономерность можно объяснить снижением энергии гидратации ионов по мере увеличения их собственного радиуса, в результате чего менее гидратированные ионы получают возможность ближе подойти к поверхности электрода, а это ведет к возникновению между анионом и металлом специфического притягательного взаимодействия. При достаточно отрицательных потенциалах анионы десорбируются и электрокапиллярные кривые в растворах, отличающихся только природой аниона, совпадают (рис. УП.9). [c.176]

    Таким образом, представление о диффузионном строении жидкостной обкладки слоя учитывает взаимодействие ионов в растворе. Представление о диффузном слое помогло объяснить ряд электрокапиллярных явлений, например снижение и смещение максимума электрокапиллярной кривой в зависимости от концентрации и состава капиллярноактивных ионов в электролите. [c.203]

    Совокупность значения поверхностного натяжения при разных потенциалах образует так называемую электрокапиллярную кривую. Известно, что при отсутствии поляризации поверхность ртути относительно раствора заряжается положительно, так как работа выхода ионов из металлической ртути С/м больше работы дегидратации Ур. Положительные заряды Нд + на поверхности ртути, отталкиваясь один от другого, стремятся увеличить поверхность, способствуя уменьшению поверхностного натяжения. Если ртуть катодно поляризовать, т. е. сообщить ей отрицательный заряд, то положительные ионы Нд + будут нейтрализованы и поверхностное натяжение на границе ртуть — раствор начинает возрастать. Однако поверхностное натяжение будет увеличиваться до тех пор, пока не будут нейтрализованы все ионы Нд2+, т. е. пока приложенный извне потенциал не станет равным скачку потенциала на границе фаз ртуть — раствор. Дальнейшее сообщение отрицательного заряда приводит к пе- [c.210]

    Поверхностно неактивные ионы (К+, На+, 80 ) почти не влияют на форму и положение электрокапиллярной кривой. [c.214]

    В классической электрохимии предполагалось, что после удаления ионного двойного слоя с границы металл — раствор разность потенциалов сведется к абсолютному нулю. Так, например, считалось, что абсолютным нулем потенциалов является потенциал (ф -), соответствующий максимуму электрокапиллярной кривой для ртути. Однако из предыдущего должно быть ясным, что если с поверхности раздела фаз металл — раствор удалить все заряды и затруднить адсорбцию посторонних поверхностно активных веществ, то и в этом случае нельзя исключить адсорбцию молекул растворителя, которые, обладая достаточным дипольным моментом, могут создать заметный скачок потенциала на границе фаз. [c.219]


    Неполяризуемый электрод отвечает такому электроду, для которого обмен потенциалопределяющими ионами между металлом и раствором совершается беспрепятственно, что наблюдается при больших токах обмена. Потенциал подобного электрода практически не изменяется под действием внешнего тока, пока последний мал по сравнению с током обмена. Идеально поляризуемым является электрод, у которого обмен ионами полн.эстью или почти полностью заторможен ц ток обмена близок к нулю. Для такого электрода уже ничтожно малый внешний ток будет изменять потенциал. Ртутный электрод в условиях снятия электрокапиллярных кривых ведет себя подобно идеально поляризуемому электроду, хотя ток обмена между металлической ртутью и раствором ее соли в состоянии равновесия очень велик. Это объясняете двумя причинами во-первых, тем, что область потенциалов, в которой снимают<я электрокапиллярные кривые, смещена в отрицательную сторону от равновесноп потенциала ртутного электрода, и по-это.му анодный процесс перехода ионов этути из металла в раствор термодинамически невероятен во-вторых, тем, что электрокапиллярные кривые снимаются в растворах, практически лишенных ионов ртут . В этих условиях катодный процесс перехода ионов ртути пз раствора на металл также невозможен, [c.236]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Обнаруженная М. А. Лошкаревь м адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (иапример, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий зна-чеЕигю, отвечающему предельному диффузионному току. Сопоставление результатов иоляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается дйствие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов. [c.462]

    Электрокапиллярная кривая при отсутствии в растворе поверхностно-активных веществ, например, в растворе Ка2504 представлена на рис. 83 (кривая /). Ионы Ка+ и ЗО не адсорбируются специфически на ртути. В присутствии специфически адсорбирующегося аниона, например, при добавлении К1 к раствору Ыа2304 вид электрокапиллярной кривой изменяется (кривая 2). Строение двойных электрических слоев, соответствующих точкам на кривых рис. 83,/, представлено на рис. 83, II. В точке на кривой 2 (см. рис. 83) имеется максимум, который соответствует потенциалу нулевого заряда. Точка ц сдвинута в сторону отрицательных потенциалов на величину ф — ф по сравнению с точкой Ь и расположена при том же потенциале, что и точка с на кривой 1. Поэтому в точке g на поверхности ртути имеется адсорбционный двойной электрический слой из специфически адсорбированных анионов и притянутых к ним катионов К+, а поверхность ртути не заряжена. Разность потенциалов нулевого заряда для кривых 1 я 2 равна адсорбционному 11)1-потенциалу 1з1 = ф —ф . Правее точки на кривой 2 на поверхности ртути появляется отрицательный заряд и в точке (1 кривые [c.304]

    Уравнения электрокапиллярной кривой названы так потому, что выражаемые ими зависимости экспериментально проверялись Лнпиманом с иомощь о прибора, называемого капиллярным электрометром (рис. П. 9). При исследовании зависимости поверхностного натяжения от потенциала двойного электрического слоя в качестве одной из фаз наиболее удобно применять металлическую ртуть, поверхиостиое натяжение которой легко измерить, например, капиллярным методом, и в то же время удобно изменять межфазный потенциал с помощью внешнего источника тока. Кроме того, ртуть являете. почти идеально поляризуемым электродом, т. е. таким электролом, на котором не протекают электродные реакции при прохол., еини тока, и поэтому изменение заряда электрода вызывает только изменение его потенциала. Это обусловлено тем, что благородные металлы почти совсем не отдают своих ионов в раствор. Малое содержание их в растворе делает невозможным и обратную реакцию (восстановления). [c.50]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    Проведем сначала качественное сопоставление выводов, вытекающих из уравнения (23.10), с опытными данными. При этом можно ограничиться рассмотрением явлений специфической адсорбции, когда результаты опыта не могут быть качественно объяснены на основе теории Гуи — Чапмена. В теории Штерна эти явления учитываются при помощи величин Ф+ и Ф . Предположим, что Ф+-=0, а Ф <0, как это наблюдается, например, в растворах К1. При этом согласно уравнению (23.10) д, фо-кривая должна быть несимметричной. Так как лектрокапиллярная кривая получается интегрированием д, Фо-кривой, то соответственно должна быть несимметричной и а,фо-кривая. Таким образом, теория Штерна позволяет объяснить несимметричность электрокапиллярных кривых, вызванную специфической адсорбцией ионов. Особенно наглядно этот вывод проявляется при п. н. 3., где, как следует из уравнения (23.10), фо=гр1. Этот результат означает, что величина фгпотенциала, обусловленная специфической адсорбцией ионов на незаряженной поверхности электрода, равна сдвигу п. н. з. при переходе от раствора поверхностно-неактивного электролита к раствору, содержащему специфически адсорбирующиеся ионы. Распределение потенциала в двойном слое представлено на рис. 60, б. На самом деле из-за дискретного характера специфически адсорбированных ионов распределение потенциала у поверхности незаряженного электрода оказывается иным, нежели это предсказывает теория Штерна. Если принять, что Ф 0, то можно объяснить перезарядку поверхности в присутствии специфически адсорбированных анионов, когда <71 > . Характерное распределение потенциала в двойном (точнее тройном) слое представлено на рис. 60, в. Величины фо и гр здесь имеют разные знаки, что позволяет объяснить положительную адсорбцию катионов при д>0. [c.112]

    Как видно из рис. 15, с ростом концентрации поверхностно-неактивного электролита наблюдается сдвиг ветвей электрокапиллярной кривой, восходящей в сторону более отрицательных потенциалов, а нисходящей — в сторону положительных. Таким образом, при повышении концентрации электрокапиллярные кривые становятся более крутыми. Величину сдвига ветви электрокапиллярной кривой при электростатической адсорбции однозарядного иона можно рассчитать из уравнений (10.1) и (10.2). Действительно, при а = onst, когда do = О, из этих уравнений следует [c.45]

    Изменение формы электрокапиллярных кривых при переходе от поверхностно-неактивного электролита (NaF) к растворам, содержащим специфически адсорбирующиеся анионы ( h, Вг , 1 ), показано на рис. 55. Специфическая адсорбция анионов на незаряженной поверхности ртутного электрода проявляется в снижении электрокапиллярного максимума, а возникновение скачка потенциала между слоем специфически адсорбированных анионов и притянутыми к ним катионами — в сдвиге потенциала нулевого заряда в отрицательную сторону по сравнению с =о в растворе NaF. Как видно из рис. 55, специфическая адсорбция галоидных ионов растет в ряду Е <С]--<Вг -<1 . Эту закономерность можно объяснить снижением энергии гидратации ионов по мере увеличения их собственного радиуса, в результате чего менее гидратированные ионы получают возможность ближе подойти к поверхности электрода, а это ведет к возникновению между анионом и металлом специфического притягательного взаимодействия. При достаточно отрицательных потенциалах анионы десорбируются и элект-рокапиллярные кривые в растворах, отличающихся только природой аниона, совпадают (рис. 55). [c.153]

    В случае поверхностно-активных электролитов адсорбция ионов имеет место и в отсутствие электростатических сил и наблюдается ее возрастание с увеличением койцентрации электролита. Таким образом, в рассматриваемом случае при п. н. з. 2+ Г+ = 2 Г Ф 0. В связи с этим согласно уравнению (3.7) ст в максимуме электрокапиллярной кривой для этих электролитов ниже, чем при чисто электростатической адсорбции ионов, и уменьшается с ростом концентрации электролита. В этих системах при п. н. з. у поверхности ртути имеется слой [c.150]

    Если же потенциал сдвигается в сторону, совпадающую со знаком заряда специфически адсорбированных ионов, то рост заряда поверхности электрода приводит в конце концов к преобладанию сил электростатического отталкивания над силами специфической адсорбции и происходит десорбция специфически адсорбированных ионов. Поэтому электрокапиллярные кривые, снятые при одной и той же концентрации для двух электролитов, один из которых поверхностнонеактивен, а другой содержит специфически адсорбирующийся анион, сливаются при достаточно отрицательных зарядах поверхности. При тех потенциалах, где происходит десорбция поверхностно-активных ионов с поверхности электрода, сдвиг ветвей электрокапиллярной [c.151]

    Форма электрокапиллярных кривых зависит от концентрации и состава раствора. На рис. VII.8 представлены электрокапиллярные кривые ртутного электрода в водных растворах фторида натрия различной концентрации. В максимуме, где 7=0, эти кривые практически совпадают. Поэтому согласно уравнению (УП.22) в этой точке Г++Г =0. Но поскольку при д=0 в растворе 1,1-валентного электролита Г+ = Г , то, следовательно, при потенциале нулевого заряда в растворе NaF Г+=Г =0. Таким образом, потенциал нулевого заряда в этой системе, равный —0,193 В (по н.в.э.), может служить точкой отсчета в приведенной шкале потенциалов фо. С ростом концентрации NaF наклон восходящего и нисходящего участков сг, Е-кривой становится более крутым. Если предположить, что адсорбция ионов Na+ и F обусловлена только электростатическими силами, то исходя из основного уравнения электрокаииллярности (VH.l9) можно ожидать сдвига ветвей а,Е-кр1Ивой, равного при значительном удалении от приблизительно 59 мВ для изменения концентрации NaF в 10 раз. Согласие экспериментальных данных с таким выводом можно рассматривать как подтверждение электростатической природы адсорбции ионов Na+ и Р . [c.175]

    Как показали исследования, потенциал нулевого заряда в значительной степени зависит от присутствия в растворе поверхностно активных ионов или молекул, которые сильно искажают электрокапиллярные кривые. Подробное исследование этой зависимости было произведено А. Н. Фрумкиным и его сотрудниками, которые изучали положение потенциала нулевого заряда для ртутного электрода в 0,001-н. растворе НС1 с добавкой различных солей. Оказалось (рис, 74), что добавление поливалентных катионов Th U, La b, Ba lj приводит к смеще- [c.213]

    Потенциал нулевого заряда данного металла можно выразить не только из максимума электрокапиллярной кривой, но н как потенциал электрода в нулевом растворе , концентрация которого такова, что металл, погруженный в него, не будет отдавать своих ионов и ионы из раствора в свою очередь не будут разряжаться на металле. В самом деле, если опустить в раствор АдНОз с концентрацией С серебряную пластинку и если в этом растворе, кроме основного электролита, присутствует соль с общим анионом, например КНОз, то при С > Со (где Со — нулевая концентрация ) ионы серебра будут разряжаться на пластинке. При этом пластинка зарядится положительно и притянет эквивалентное количество ЫОз -ионов. [c.222]


Смотреть страницы где упоминается термин Электрокапиллярная кривая ионов: [c.237]    [c.239]    [c.249]    [c.51]    [c.99]    [c.35]    [c.40]    [c.44]    [c.35]    [c.40]    [c.151]    [c.381]    [c.158]    [c.214]   
Физика и химия поверхностей (1947) -- [ c.438 ]




ПОИСК





Смотрите так же термины и статьи:

Кривая электрокапиллярная

Электрокапиллярные



© 2025 chem21.info Реклама на сайте