Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазер применение в спектроскопии

    Другой метод колебательной спектроскопии, основанный на комбинационном рассеянии света (спектроскопия КР), длительное время не находил широкого применения в неорганической химии из-за технических трудностей получения спектров КР. Положение радикально изменилось в связи с созданием оптических квантовых генераторов (лазеров), применение которых для возбуждения спектров КР устранило существовавшие ограничения и трудности. [c.211]


    Приборами будущего в ИК спектроскопии являются уже существующие интерферометры (фурье-спектрометры) высокого разрешения, а также некоторые типы приборов, разрабатываемые на совершенно новых принципах. Использование лазеров в спектроскопии КР привело не только к качественному скачку в традиционных применениях этого метода, но и к появлению новых методов, основывающихся на нелинейных оптических эффектах. Хотя такие методы, как, например, КАРС, гигантское КР и др., пока еще хи- [c.289]

    Это относительно новый метод анализа, название которого еще не является общепринятым. В работах, посвященных аналитическому применению данного метода, использовались и другие названия, а именно усиленная лазером ионизация, метод оптогальванической спектроскопии нлн метод резонансной ионизационной спектроскопии. [c.183]

    Методы лазерной аналитической спектроскопии особенно часто применяются для определения сверхмалых количеств веществ. Именно этими методами были достигнуты абсолютные пределы обнаружения — в просвечиваемом лазером объеме были детектированы единичные атомы и молекулы. Однако широкое применение лазерных методов в настоящее время сдерживается отсутствием доступных необходимых промышленных лазеров. [c.195]

    Повышения интенсивности рассеянного света можно добиться с помощью достаточно интенсивных световых потоков или мощных лазеров. Качество регистрации рассеянных квантов можно повысить, имея совершенное оптическое и электронное оборудование. Применение лазеров стимулировало развитие этой, уже ставшей классической, области спектроскопии. Лазеры не только повысили чувствительность спектроскопии обычного (спонтанного) комбинационного рассеяния, но и стимулировали развитие новых методов, основанных на вынужденном, например на антистоксовом, комбинационном рассеянии, носящем название когерентного антистоксового рассеяния света (КАРС) или, в частности, резонансного комбинационного рассеяния (РКР). При возрастании интенсивности падающего лазерного излучения становится значительной интенсивность рассеянного стоксового излучения. В этих условиях происходит взаимодействие молекул одновременно с двумя электромагнитными волнами лазерной vл и стоксовой V т = Vл — v , связанных между собой через молекулярные колебания с VI,. Такая связь (энергетическая) между излучением накачки и стоксовой (или антистоксовой) волной может привести к интенсивному поляризованному излучению на комбинационных частотах, другими словами— к вынужденному комбинационному рассеянию. Причем в этих условиях оказывается заметной доля молекул, находящихся в возбужденном колебательном состоянии, и в результате на частотах Гл + VI, возникает интенсивное антистоксово излучение. [c.772]


    Использование лазеров значительно расширило границы применения К. р. с. и привело к развитию ряда новых методов в спектроскопии КР. Возможность изменения длины волны возбуждения путем замены лазеров или с помощью лазера с перестраиваемой частотой привела к развитию резонансного КР, к-рое возникает, когда частота возбуждающего света попадает в область поглощения в-ва. Этот метод позволяет определять низкие концентрации в-в, что особенно важно для биологии и биохимии. [c.437]

    Изучены [783] возможности применения резонансной пламенной атомно-флуоресцентной спектроскопии при возбуждении непрерывным спектром лазера на красителях с двоякопреломляющим фильтром со сканирующим механизмом на выходе. [c.134]

    За 30 лет своего существования лазеры внесли радикальные изменения в уровень современной оптики и спектроскопии. Появление лазеров привело как к появлению новых областей исследования (например, нелинейная оптика и спектроскопия), так и к существенному улучшению характеристик спектроскопических методов [55]. Однако ограниченное применение лазерных методов в повседневной практике аналитических лабораторий связано со спецификой лазерной аппаратуры (сложная, дорогая, требует квалифицированного обслуживания) и с недостаточной универсальностью метода. [c.241]

    Кроме высокой интенсивности лазерного излучения в методах термооптической спектроскопии очень важно еще одно свойство лазеров. Это — совершенно определенное пространственное распределение энергии в луче. В результате локального нагрева при облучении среды лазерным излучением в ней устанавливается распределение оптических характеристик, профиль которого соответствует распределению энергии падающего излучения. В этом случае термооптический эффект оказывается регулярным он приводит к образованию в изотропной до облучения среде оптического элемента, подобного по своему действию линзе, призме, дифракционной решетке и т. п. В табл. 11.12 приведены данные об образующихся в результате поглощения термооптических элементах, измеряемых сигналах, методах их регистрации и областях применения таких методов. [c.333]

    Со времени создания в 1960 г. первого лазера квантовая электроника прошла в своем развитии огромный путь. Открыты различные виды лазеров, генерирующих излучение на тысячах длин волн в спектральном диапазоне примерно от 0,1 до 2000 мкм, разработаны эффективные методы управления параметрами излучения. Стали реальностью казавшиеся ранее невероятными чрезвычайно высокие мощность, степень монохроматичности, спектральная яркость и другие параметры оптического излучения. Успехи лазерной техники и быстрое развитие сфер ее применения привели не только к существенному усовершенствованию традиционных оптических методов исследования, но и к появлению принципиально новых идей и методов, новых научных направлений. Диапазон научных и практических применений лазеров постоянно расширяется. Представление об этом может дать простое перечисление примеров — лазерные спектроскопия и фотохимия, управляемый термоядерный синтез, локация и связь, контроль за состоянием природной среды, микрохирургия отдельной живой клетки, автоматический раскрой тканей и металлических листов... Без преувеличения можно утверждать, что нет ни одного естественно-научного направления или связанной с ним области техники, где бы применение лазеров уже не привело к получению новых интересных результатов или не сулило их получение в будущем. [c.159]

    Физическая химия — область науки, где применение лазеров оказалось весьма плодотворным, а перспективы остаются по-прежнему широкими и заманчивыми. Очевидно, что выиграли больше других и развиваются быстрее те направления, в основе которых лежат проблемы взаимодействия электромагнитного излучения с веществом, и прежде всего — оптическая спектроскопия и фотохимия. Воздействие достаточно мощного лазерного излучения на вещество сопровождается различными эффектами, величина которых нелинейно зависит от интенсивности излучения. Эти эффекты стали предметом весьма успешных исследований в совершенно новой научной области — нелинейной лазерной спектроскопии. Появились лазерные спектроскопические методы исследования очень слабого поглощения, чрезвычайно быстропротекающих процессов и многие другие. Большие перспективы открылись и в [c.159]

    ПРИМЕНЕНИЕ ЛАЗЕРОВ В ЭКСПЕРИМЕНТАЛЬНОЙ СПЕКТРОСКОПИИ 379 [c.379]

    Применение лазеров в экспериментальной спектроскопии [c.379]

    Огромное значение для оптики и спектроскопии имеет изобретение оптических квантовых генераторов и развитие методов, органически связанных с применением лазерных источников света. Хорошо известно, что в оптике лазеры привели к подлинной революции, роль которой с течением времени осознается все в большей степени. Вне оптики лазерные методы и приборы применяются не столь широко, как это должно быть, ибо всегда существует известный разрыв между научными достижениями и их прикладной реализацией. Так или иначе, сегодня классические спектральные приборы по-прежнему занимают ведущие позиции и по валу , и по ассортименту . В то же время темп внедрения лазеров исключительно высок, а область применения оптических методов благодаря лазерам непрерывно расширяется. [c.3]


    Особенность применения лазера — отсутствие фракционного испарения. Лазеры как источники света изучены мало, однако стимулированное излучение ОКГ используют для решения ряда задач прикладной спектроскопии, например при анализе геологических материалов и сплавов. Особенно ценно применение лазера для локального анализа при определении микровключений в минералах и при изучении межкристаллического распределения элементов в металлах и сплавах [53]. [c.50]

Рис. 10.9. Схема измерительных систем, использованных для диагностики радиочастотной (и-Г-Аг)-плазмы с применением абсорбционной и эмиссионной спектроскопии 1 — инжектор ПРе 2 — самописец 3 — радиометр 4 — генератор сигналов для сканирования зеркала 5 — самописец 6 — процессор 7— лампа 8 — ионное устройство для накачки лазера 9 — лазер 10— спектроанализатор 11 — вращающееся зеркало 12 — измеритель мощности 13 — разделитель лучей 1 — фиксированный фронт поверхности зеркала 15 — подвижное зеркало 16 — монохроматор 17 — фильтры 18 — высоковольтный источник электропитания 19 — прерыватель для сканирования поглощения 20 — индикатор 21 — детектор и усилитель изменения фазы 22 — ленточный самописец 23 — сигнал 2 — линза 25 — фиксированный фронт поверхности зеркала 26 — схематический поворот на 90° для простоты изображения Й7 — к детектору 28 — прерыватель, использованный для сканирования поглощения 29 — линза 30 — заслонка для сканирования излучения 31 — разрядная камера 32 — плазма 33 — регулируемый держатель зеркала 3 — фиксированный фронт поверхности зеркала 35 — коллиматор 36 — ввод в кожух разрядной камеры 37 — фиксированный фронт поверхности зеркала Рис. 10.9. <a href="/info/820382">Схема измерительных</a> систем, использованных для диагностики радиочастотной (и-Г-Аг)-плазмы с <a href="/info/782870">применением абсорбционной</a> и <a href="/info/5640">эмиссионной спектроскопии</a> 1 — инжектор ПРе 2 — самописец 3 — радиометр 4 — генератор сигналов для <a href="/info/449867">сканирования зеркала</a> 5 — самописец 6 — процессор 7— лампа 8 — <a href="/info/221886">ионное устройство</a> для <a href="/info/128557">накачки лазера</a> 9 — лазер 10— спектроанализатор 11 — вращающееся зеркало 12 — <a href="/info/616830">измеритель мощности</a> 13 — разделитель лучей 1 — фиксированный <a href="/info/310858">фронт поверхности</a> зеркала 15 — подвижное зеркало 16 — монохроматор 17 — фильтры 18 — <a href="/info/377016">высоковольтный источник</a> электропитания 19 — прерыватель для сканирования поглощения 20 — индикатор 21 — детектор и усилитель <a href="/info/1262750">изменения фазы</a> 22 — <a href="/info/40418">ленточный самописец</a> 23 — сигнал 2 — линза 25 — фиксированный <a href="/info/310858">фронт поверхности</a> зеркала 26 — схематический поворот на 90° для простоты изображения Й7 — к детектору 28 — прерыватель, использованный для сканирования поглощения 29 — линза 30 — заслонка для <a href="/info/1529525">сканирования излучения</a> 31 — <a href="/info/1337202">разрядная камера</a> 32 — плазма 33 — <a href="/info/1828541">регулируемый</a> держатель зеркала 3 — фиксированный <a href="/info/310858">фронт поверхности</a> зеркала 35 — коллиматор 36 — ввод в кожух <a href="/info/1337202">разрядной камеры</a> 37 — фиксированный <a href="/info/310858">фронт поверхности</a> зеркала
    После периода относительного упадка популярности Раман-спектроскопии в 50-х годах она стала постепенно отвоевывать прежние позиции. Так, если в конце 50-х годов соотношение числа работ, в которых применялась ИК- и Раман-спектроскопия, было равно примерно 15 1, то в начале 70-х оно снизилось до 2 1. Объясняется это возрождение Раман-спектроскопии не только усовершенствованием ее техники, начавшемся с конца 50-х годов, созданием инструментов, позволяющих получать спектры высокого разрешения, но в первую очередь применением такого источника монохроматического излучения, как лазеры (1961). Первые работы по применению лазеров в этой области относятся к 1962 г. [75]. [c.244]

    Короткая гл. 10 содержит описание методики проведения фотохимических реакций, актинометрии. (Метод импульсной спектроскопии, к сожалению, мало распространенный в советских лабораториях, кратко описан в гл. 4.) Кроме того, в гл. 10 затронуты вопросы применения лазеров в фотохимии. [c.6]

    Несколько лет назад была установлена возможность применения лазерной КР спектроскопии для анализа на больших расстояниях. Луч лазера от мощного генератора направили в атмосферу и наблюдали рассеянное излучение при помощи КР спектрометра, присоединенного к отражательному телескопу. Удалось обнаружить линии азота и кислорода, находящихся на расстоянии больше километра от поверхности Земли. В настоящее время лазерный анализ по КР спектрам используют для обнаружения загрязнений в атмосфере на достаточно большой высоте и при малых их концентрациях. [c.359]

    Вместо перестройки частоты излучения лазера по молекулярным линиям поглощения часто можно сдвигать молекулярные уровни с помощью внешнего магнитного или электрического поля так, чтобы получить совпадение между линиями генерации с фиксированной частотой и врашательными или вращательно-колебательными переходами [73, 74]. Вращательные уровни парамагнитных молекул, находящихся внутри резонатора лазера, могут быть, например, сдвинуты с помощью эффекта Зеемана при приложении магнитного поля так, что они совпадут с линиями генерации в дальней инфракрасной области, в результате чего возникает резонансное поглощение лазерного излучения. Резонанс фиксируется по уменьшению мощности генерации лазера. Лазерная спектроскопия магнитного резонанса — один из наиболее чувствительных методов обнаружения молекул и свободных радикалов. Впервые этот метод был применен к Ог [75], а впоследствии к другим стабильным молекулам N0, КОг и НгО и свободным радикалам ОН, СН и НСО [76]. [c.264]

    Применение лазеров в спектроскопии релеевского и маидельштам-брнллюэновского рассеяния света открыло новые возможности изучения межмолекулярного взаимодействия в растворах. Межмолекулярное взаимодействие в растворах проявляется также в поглощении звука, причем в некоторых случаях резкие из.менения спектра рассеянного света сопровождаются значительным ростом избыточного поглощения звука. Достаточно вспомнить, что вблизи критической точки расслаивания наблюдается опалесценция и сильное поглощение звука [1]. В ряде перассаливающихся растворов также можно наблюдать корреляцию между ростом интенсивности светорассеяния и поглощения звука [2, 3]. [c.165]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]

    Помимо обычных одноквантовых переходов, в каждом из к-рых поглощается или испускается один квант энергии, возможны многофотонные процессы, представляющие собой либо последовательность неск. одноквантовых переходов, либо один К. п. системы между двумя квантовыми состояниями, но с излучением или поглощением неск. квантов одинаковой или разной энергии. Вероятность многоквантовых переходов быстро уменьшается с понижением интенсивности взаимодействующего с в-вом электромагн. излучения, поэтому их исследование стало возможным лишь благодаря применению лазеров. Простейший двухквантовый процесс-комбинац. рассеяние света, при к-ром частица (атом, молекула) одновременно поглощает квант энергии и испускает квант меньшей или большей энергии. При последоват. поглощении молекулой двух квантов света возможны в ряде случаев фотохим. р-ции (см. Двухквантовые реакции). Четырехквантовый переход является, напр., основой метода когерентного антистоксова рассеяния света (КАРС) (см. Комбинационного рассеяния спектроскопия). С помощью этого метода удается изучать такие состояния, переходы в к-рые запрещены при одноквантовых переходах. [c.368]

    Аналитические применения лазеров основаны по крайней мере на одном из следующих свойств монохроматичность, когерентность, высокая плотность мощности (или поток). Примером использования монохроматичности служит резонансная ионизационная масс-спектрометрия (РИМС, см. разд. 8.5) и спектроскопия комбинационного рассеяния (см. разд. 9.2 и 10.5). Высокий поток используют для лазерной абляции (см. разд. 8.1 и 8.5). [c.688]

    В конце 70-х гг. начали развиваться два новых направления, способствующие расширению использования БИКС в аналитической химии. С одной стороны, хемометрические методы обработки результатов в комбинации с измерением НПВО открыли возможности недеструктивного многокомпонентного анализа и идентификации твердых полимеров с различной морфологией. С другой стороны, появление волоконной оптики резко расширило применение БИКС для дистанционного контроля процессов и материалов. Датчик, соединенный со световодом, можно разместить на расстоянии в сотни метров от спектрометра, что облегчает контроль процессов с участием токсичных и опасных веществ. В последнее время дальнейший прогресс достигнут разработкой систем монохроматоров для быстрого сканирования в БИКС, например перестраиваемых оптоакустических фильтров. К БИКС относится также новый метод спектроскопии КР, использующий Nd-лазер с длиной волны 1064 нм [59]. [c.242]

    Перспективы применения у-резонанской спектроскопии связаны, во-первых, с созданием мёссбауэрографии , т. е. рентгенографии на излучении мёссбауэровских ядер. Во-вторых, началась разработка у-лазеров, что в принципе обещает возможность голографии на молекулярном уровне. [c.140]

    Немного более полутора столетий прошло с тех пор, как А.-Ж. Балар открыл и выделил элементный бром. За это время бром и его соединения получили много важных практических приложений. Свободный бром применяют в аналитической и органической химии, для дезинфекции воды и отбеливания хлопка. Неорганические соединения брома интересны как катализаторы органических реакций и гидрофилизаторы текстильных волокон их применяют в качестве добавок к светочувствительным фотографическим эмульсиям, лазерам и в качестве оптических материалов для ИК-спектроскопии. Органические соединения брома являются важными добавками к антидетонационным присадкам, консервантами, фумигантами почв и пищевых продуктов. С разработкой более эффективных, чем существующие, способов очистки брома будут, несомненно, найдены новые области его применения. [c.5]

    Для создания сильных магнитных полей наиболее удобны магнитные системы на основе сверхпроводящих соленоидов. В настоящее время в спектроскопии ЯМР широко применяются сверхпроводящие системы на 50—100 кЭ, в которых однородные магнитные поля создаются в достаточно больших объемах. Повышение магнитного поля до 100 кЭ требует испотпьзования электромагнитного излучения с частотой 3.10 Гц или с длиной волны 1 мм. Это весьма неудобный диапазон, так как источники излучения на основе лазеров работают в более коротковолновой области, а традиционные для ЭПР-спектроскопии клистронные генераторы освоены для более длинноволновых диапазонов ( ]> 2 мм). Исходя из этих соображений, для практической работы выбран диапазон >, = 2 мм (N 50 кЭ). Для химических применений необходимо было создать спектрометр, обладающий достаточно высокой концентрационной чувствительностью и позволяющий проводить исследования в широком диапаэоне температур и с образцами разного типа (растворы, порошки, стекла и т. д.). [c.176]

    Физические основы. Метод атомно-ионизационного спектрального анализа (АИСА) основан на селективной ионизации атомов определяемого элемента и регистрации продуктов ионизации (ионов или электронов). Практическое применение метода началось только с появлением лазеров и во многом благодаря развитию методов лазерной спектроскопии. Селективность достигается за счет того, что ионизация осуществляется из высоковозбуяаденных состояний атома. В зависимости от способа атомизации анализируемой пробы и способа ионизации возбужденных атомов данный метод назы- [c.854]

    С целью создания новых типов высокоинформационной спектральной аппаратуры, пригодной для работы в самых разнообразных условиях, в последние годы ведутся поиски новых принципов построения такой аппаратуры, исследуются возможности использования новых физических явлений. С этой точки зрения применение в спектроскопии методов голографии и использование такого мощного источника когерентного излучения как лазер кажутся особенно перспективными. [c.355]

    В самое последнее время наметилось возрождение интереса к оптическим методам, вызванное применением принципиально новой техники. Так, в ИК-спектроскопии в результате использования новых методов возбуждения и регистрадии (лазеры с перестраиваемой частотой, фурье-спектрометрия, машинная обработка и др.) удалось повысить основные характеристики метода (чувствительность, разрешение, скорость регистрации) на несколько порядков. В связи с этим есть всё основания полагать, что в ближайшие годы оптические методы снова войдут в число наиболее информативных и универсальных как ультрамикрометод исследования и анализа. [c.198]

    Среди лазеров на основе органических соединений с оптической накачкой наиболее глубоко изучены лазеры на электронных переходах в сложных органических молекулах. В результате техника ЛОС достигла весьма высокого уровня развития, необходимого при использовании таких сложных устройств, как лазеры, а ценные свойства ЛОС обеспечили им очень широкий круг применений в различных физико-химических исследованиях. Применение ЛОС прежде всего в спектроскопии, фотохимии, в исследованиях селективного воздействия лазерным излучением на вещество привело к возникновению или существенному развитию принципиально новых методов исследования, таких как двухфотонная спектроскопия, свободная от доплеровского уширения, многофотонная резонансная ионизационная спектроскопия, спектроскопия когерентного антистоксова комбинационного рассеяния, внутрире-зонаторная абсорбционная спектроскопия и др. Рассмотрению [c.197]

    Лазеры. Перестраиваемые лазеры на красителях. Возбуждение и ионизация в АВЛИС-процессе производится лазерами на красителях с перестраиваемой длиной волны, работающими в импульсном режиме. Длительность импульсов равна Tq = 10 30 не. Спектральная ширина одной моды излучения импульсного лазера составляет Аг лаз = 50 100 МГц, а импульса, содержащего несколько продольных мод, может быть 2 -ь 3 ГГц. Для лазеров на красителях непрерывного действия ширина генерируемого излучения может быть сделана А//лаз < 1 МГц (например, лазер R-699-21 фирмы oherent). Однако лазеры непрерывного действия из-за трудностей получения высоких мощностей находят применение больше в спектроскопии, чем в наработке изотопов. Частота повторения импульсов определяется оптимальной частотой работы лазеров накачки / = 3 ч- 25 кГц, которая связана с высотой светового пятна h в рабочем объёме, и выбирается из расчёта освещения всех поступающих в разделительную ячейку испарённых атомов h v/f- [c.420]

    В ближайшие 5—10 лет в массовых областях применения сохранятся в основном традиционные спектроскопические методы и приборы. Однако одно из существенных направлений развития спектральных приборов будет связано с лазерными методами и с использованием лазеров. Лазеры позволяют создать принципиально новые приборы. Можно выделить три направления в лазерном спектральном приборостроении. Во-первых, это разработка приборов и методов, которые в принципе невозможны без применения лазеров, в частности приборы для многофотонной спектроскопии, для спектроскопии сверхвысокого разрешения (внутри допплеровского контура), спектроскопип с временным разрешением лучше 10 с. Во-вторых, развитие спектроскопических методов, в которых лазеры обеспечат скачок значений основных приборных параметров. Сюда относятся внутрирезонаторная спектроскопия, спектроскопия высокого разреп1ения. Третьим направлением можно считать сочетание классических и лазерных устройств, приводящее к значительному повышению возможностей спектроскопических методов, что осуществлено, например, при регистрации спектров КР с лазерным возбуждением. [c.11]

    Практически для всех спектроскопических применений необходимы перестраиваемые лазеры. Основные требования к ним — широкая область перестройки, узкая по.тоса генерации, высокая стабильность частоты и энергип излучения, воспроизводимость этих параметров. Наибольшие успехи в видимой и УФ-областях достигнуты сейчас за счет лазеров на красителях, а в ИК-области — с полупроводниковыми лазералп и лазерами на молекулярных газах. Уже освоены ширины лггапй генерации от 1 кГц до 1 МГц в непрерывном и 10—30 МГц в импульсном режимах, перекрывающие обычные потребности спектроскопии. Полученные спектральные плотности излучения мощности диодных ИК-лазеров 10 Вт/Гц значительно превосходят тепловые излучатели. Мощности непрерывных лазеров на красителях достигают 1 мВт п более. Основные проблемы состоят в повышении стабильности генерации, воспроизводимости и развитии методов непре-рывпой перестройки в широком диапазоне. Это, конечно, приведет к усложнению лазеров и увеличению их стоимости. Сейчас стоимость перестраиваемого лазера сравнима со стоимостью хорошего спектрофотометра, следовательно, трудно ожидать дешевых. лазерных приборов. Более вероятно их применение для специальных задач, особенно когда финансовые проблемы отходят на второй план. Еще раз подчеркнем важность производства лазерного набора , который фактически является спектральным прибором для исследовательских лабораторий. [c.12]

    Благодаря импульсной спектроскопии можно непосредственно обнаруживать появляющиеся при фотохимических реакциях ко-роткоживущие частицы в возбужденном (например, триплетном) или основном состоянии (например, радикалы, ионы), если они отличаются по спектру от исходных систем [11, 12]. По существу, при этом используются методы абсорбционной или эмиссионной спектроскопии с тем, однако, отличием, что при облучении интенсивной вспышкой образуются значительно более высокие концентрации возбужденных молекул. Благодаря этому, например, могут быть зарегистрированы триплетные состояния в растворах даже при нормальных температурах. Важным условием для применения импульсного метода является небольшая продолжительность вспышки по сравнению с временем жизни обнаруживаемых частиц. Поэтому для генерации светового импульса применяют а) фо-тоимпульсные лампы с продолжительностью импульса 10 с — для наблюдения триплетных состояний б) лазеры с длительностью импульса 10 —10 с, которая позволяет исследовать интервалы времени, типичные для синглетных возбужденных состояний (10- с) в) лазеры с очень короткими импульсами порядка 10 —10 2 с (например, неодимовый лазер), с помощью которых можно исследовать механизм безызлучательной релаксации и т. п. [c.99]


Библиография для Лазер применение в спектроскопии: [c.209]   
Смотреть страницы где упоминается термин Лазер применение в спектроскопии: [c.277]    [c.11]    [c.268]    [c.5]    [c.7]    [c.268]    [c.177]    [c.184]    [c.247]    [c.136]   
Физические методы исследования в химии 1987 (1987) -- [ c.284 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры

ЭПР-спектроскопия применение



© 2025 chem21.info Реклама на сайте