Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция активирующая

    Рис. хм. Изотермы адсорбции активиро- [c.717]

Рис. ХМ. Изотермы адсорбции активиро-нанным углем различных веществ Рис. ХМ. <a href="/info/3644">Изотермы адсорбции</a> активиро-нанным углем различных веществ

    Изучению каталитической активности гемина было посвящено большое число работ [2]. Гемин является активным катализатором распада перекиси водорода и ряда окислительных процессов. Однако именно эти эксперименты показали особенно отчетливо, что активная группа, отделенная от своего носителя, обладает значительно меньшей активностью и весьма слабо выраженной избирательностью. Активность гемина в реакции разложения перекиси водорода можно увеличить при адсорбции его на угле. Адсорбция активирует гемин по отношению к определенным, но не всем, реакциям, в которых )н проявляет себя как катализатор. Простые ионы железа тоже активируются при адсорбции на угле. Такие системы можно рассматривать как простейшие и очень грубые модели ферментов, в которых уже более определенно намечены активная группа и носитель. [c.144]

    Возникновение и начальная стадия питтинга. Возникновение питтинга связано с анодным электрохимическим пробоем пассивной (фазовой или адсорбционной) пленки в отдельных точках (где пассивное состояние менее совершенно) и при достижении поверхностью металла определенного для данных условий значения потенциала (потенциала питтингообразования). Согласно пленочному механизму пассивности, образование питтинга происходит в результате адсорбции активирующих ионов, например, хлор-ионов, в наиболее анодных участках, их [c.75]

    Показатели Абсорбция поглоти- тельным маслом Адсорбция активиро- ванным углем [c.100]

    В зависимости от типа изучаемого катализатора принято определять либо общую удельную поверхность, либо только поверхность активирующих компонентов (в сложных катализаторах). В первом случае используют принцип физической адсорбции, а во втором случае— принцип избирательной хемосорбции. [c.71]

    Если сравнить адсорбцию бензола и дифенила, легко заметить, что в то время как против всех трех активируемых связей бензола имеются свободные центры катализатора, на которых может активироваться водород, против связей дифенила таких центров только четыре. Этим, вероятно, частично объясняется разница в скоростях гидрирования этих углеводородов на платине. [c.155]

    Повышение концентрации электролита сопровождается изменением ij/]-потенциала (см. 174). Поскольку при выделении водорода электродный потенциал имеет отрицательный знак, то из рис. 171 видно, что с ростом концентрации раствора i i становится более положительным. В соответствии с (187.2) перенапряжение при этом возрастает. Аналогичным образом можно проследить влияние на перенапряжение адсорбции поверхностью электрода ПАВ. При адсорбции катионов фх-потенциал становится более положительным по сравнению с его значением в отсутствие ПАВ в расгворе (см. рис. 172), что сопровождаете ростом перенапряжения. Адсорбция анионов снижает перенапряжение. При адсорбции катионов П. В действует как ингибитор — замедлитель электрохимической реакции, при адсорбции анионов — как активатор. Значительным активирующим действием обладают, например, ионы СГ и 1 . Адсорбция ПАВ на границе металл — раствор происходит в определенной для каждого вещества области потенциалов. Поэтому влияние ПАВ на перенапряжение отмечается только тогда, когда потенциал электродного процесса находится в области адсорбции ПАВ. [c.513]


    При соприкосновении двух поверхностей контакт происходит не по всей площади, а лишь на относительно небольшом числе выступов шероховатостей. В результате скольжения поверхностей друг относительно друга неровности одной поверхности стирают неровности противоположной и образуется гладкий след. Если эта поверхность металлическая, то здесь сразу же адсорбируется газ или происходит ее окисление. Последующие перемещения шероховатостей стирают пленку оксида они могут и механически активировать реакцию адсорбции кислорода на металле и образования оксида, который, в свою очередь, также стирается (рис. 7.20). Это химическая составляющая разрушения при фреттинге. Кроме того, шероховатости вызывают определенный износ, удаляя частички металла. Это механическая составляющая. Оторвавшиеся частицы металла превращаются в оксид, и поверхность металла через некоторое время начинает истираться о движущиеся частицы в большей степени, чем о противоположную поверхность (в результате низкое вначале электрическое сопротивление между поверхностями становится высоким). [c.165]

    Мы можем также принять во внимание, что окислению предшествует быстрая физическая адсорбция кислорода, вслед за которой с меньшей скоростью идет хемосорбция атомов кислорода. Хемосорбированный кислород в свою очередь взаимодействует с металлом с образованием оксида металла. Эта реакция механически активируется при движении шероховатостей по поверхности металла. Количество оксида, которое образуется в результате такого процесса, лимитируется хемосорбцией. Скорость хемосорбции подчиняется уравнению, идентичному по форме уравнению (27) [6]. Следовательно, какой бы процесс ни преобладал, вид конечного выражения остается по существу одинаковым. [c.413]

    Причина снижения энергии активации при каталитических процессах еще не совсем ясна, но имеются вполне вероятные предположения. Старые представления об ускорении реакции (благодаря адсорбции поверхностью) подверглись пересмотру с точки зрения кинетики. Было действительно установлено, что адсорбированные пары и газы активируются легче, чем не адсорбированные, и что молекулы адсорбента при адсорбции поверхностью деформируются и связи между атомами могут даже разорваться. [c.33]

    Для понимания сути гидрирования основной интерес представляет первичный процесс диссоциации Н - 2Н и установление его причин. Принято считать, что диссоциация на атомы есть предел деформации молекулы, попавшей в силовое поле поверхности катализатора. Было высказано предположение, что при ориентированной адсорбции водорода платиной его молекула деформируется. Электроны молекулы водорода смещаются к положительно заряженной поверхности и как бы погружаются в нее, а ионы водорода остаются на поверх,ности. Такая деформация сильно активирует водород, поэтому он и становится способным к присоединению по месту связи С=С. И. Лэнгмюр считал, что поверхностное поле катализа- [c.426]

    В ЭТОМ уравнении адсорбционные -коэффициенты Ь. и Ьд определяют адсорбцию на поверхности, активирующей водород, [c.435]

    Возникает вопрос, в чем же заключается в этом случае действие реакции на поверхность Предположение о прочной адсорбции на ней каких-то активных промежуточных продуктов реакции было исключено результатами опытов, в которых сосуд нагревался до 1000—1100° с одновременной откачкой. Такая обработка, несомненно, должна привести к снятию с поверхности активирующих ее промежуточных продуктов и, следовательно, сосуд должен снова стать малоактивным. Опыт, однако, привел к прямо противоположному результату после такой термической обработки и тщательнейшей откачки сосуд стал еще активней. Авторы [c.73]

    Адсорбционная теория объясняет, почему катализатор должен иметь максимальную поверхность на единицу веса его чем больше поверхность, тем количественно сильнее выражены процессы адсорбции, тем больше массы реагирующих веществ активируются и тем выше скорость реакции. [c.141]

    Вопросы активации в процессах адсорбции неотделимы от эффектов взаимного влияния катализатора и реагирующих веществ. С этой точки зрения и необходимо рассматривать механизм активирующего действия катализаторов в каталитических процессах. [c.68]

    Активирующее действие хлоридов на растворение никелевых анодов объясняется специфической адсорбцией хлорид-ионов, в результате чего с поверхности никеля удаляются кислород, гидроксил-ионы и другие пассивирующие ее чужеродные частицы. Кроме того, растворимость хлорида никеля выше, чем сульфата. [c.308]

    Как уже указывалось, обычно активность катализаторов данного типа объясняется присутствием на их поверхности протонов, причем некоторые исследователи полагают, что протоны в составе активироваганой окиси алвэминия возникают в результате молекулярной адсорбции активирующей кислоты [2, 3]. Однако полученные экспериментальные данные не подтвердили наличие молекулярно адсорбированной кислоты. [c.70]


    На рис. 21 представлена за-Таблица 17 висимость адсорбции активиро-Поглощение ОП-Ю и смеси красите- ванным антрацитом неионоген-лей из раствора неподвижным слоем ного ПАВ ОП-10 от концентра-угля АГ-5 [c.85]

    При активации катализатора раствором сернокислого алюминия протекают два процесса — удаление оставшихся примесей и внедрение новых ионов алюминия. При втором процессе происходит не только удаление ионов натрия, но и адсорбция на поверхности ионов алюминия мономолекулярным или полимолекулярным слоем. Во время активации концентрация активирующего раствора сернокислого алюлшния понижается концентрация в объеме резко отличается от концентрации вблизи поверхности, откуда происходит образование новой фазы. Для выравнивания концентраций необходимо энергичное перемешивание. Ввиду малого теплового эффекта реакции температурные условия в процессе активации не имеют существенного значения, но температура не должна быть выше, чем при термообработке. [c.59]

    Рассмотрим факторы, от которых зависит активность катализатора. На основании изучения природы активности аморфных алюмосиликатных катализаторов почти двадцать лет назад обнаружено, что обезвоженный катализатор вследствие значительного коксообразования не обладает достаточной активностью. Однако в результате адсорбции небольшого количества воды (0,2%) при высокой температуре его активность восстанавливается. Слабо дегидратированные образцы (1,4% воды) обладают высокой и стабильной активностью. Для объяснения активирующего действия воды сделано предположение [9, с. 37, 67], что гидроокиси, являющиеся активными центрами, способны отщеплять протон и резко увеличивать свою кислотность при гидратации. Одновременно происходит стабилизация аниона, образующегося на поверхности катализатора крекинга при отщеплении протона, и увеличивается подвижность П01след-него. Это отмечено и в работах [26, 37]. [c.58]

    Изложенные представления об активных центрах базируются на следующих положениях считается, что число активных центров постоянно, они фиксированы на поверхности, и адсорбция не изменяет ни их природы, ни числа. В последнее время в связи с развитием электронных и цепных представлений такой статический взгляд на природу и судьбу активных центров меняется. Н. Тон и Г. Тейлор [23] допускают возникновение и исчезновение активных центров. Последние образуются при контакте атомов катализатора с центрообразующими реагентами. Центрообразующим реагентом может быть один из участников реакции, активирующийся при хемосорбции. При каталитических реакциях такими реагентами чаще всего являются Наде, Оадс, С1адс. Активные центры при взаимодействии со вторым, не адсорбированным компонентом реакции образуют конечный продукт. [c.113]

    Н. Д. Зелинский [5J в 19i5 г. предложил для крекинга нефтяных углеводородов такие катализаторы, как флоридин, бахчисарайский гиль и различные глины, т. е. природные алюмосиликаты. В том же году Л. Г. Гурвич [6] нашел, что флоридин активирует реакцию полимеризации газообразных олефинов. Катализаторы из AljO , SiOj, глин, пермутитов, силикатов и тому подобных природных материалов часто встречаются в патентной литературе. Синтетический алюмосиликатный катализатор получали адсорбцией 1% Al. O, силикагелем и применяли его для полимеризации олефинов. Актив- [c.309]

    При гетерогенном катализе в качестве катализаторов чаще всего исполь-.зуются смеси твердых веществ, каждое из которых играет определенную роль в стадиях каталитического процесса. Нескомпенсироваиное потенциальное поле и большое число дефектов кристаллической структуры приводят к тому, что на поверхности возникают особые активные центры адсорбции, а также донорные и акцепторные участки (центры), на которых происходит присоеди-ление или отщепление нуклеофильных и электрофильных частиц, протонов и -электронов. Чаще всего используемый в настоящее время катализатор синтеза аммиака имеет состав Ре/КаО/АЬОз. Первой стадией реакции синтеза -аммиака является адсорбция N3 на (1,1,1)-поверхности кубической объемно-центрированной решетки железа. На поверхности катализатора происходит также расщепление Нг на атомы. Адсорбированная и активированная молеку--ла N2 постепенно гидрируется атомарным водородом до промежуточного образования ЫаНб. При последующем присоединении атома водорода связь разрывается и образуется молекула аммиака ЫНз. Другие компоненты катализатора оказывают активирующее и стабилизирующее воздействие на отдельные стадии этого химического процесса. [c.436]

    Наряду с объемно-смешанными композициями значительный интерес представляет электрокатализ адатомами. Адатомы образуются на поверхности в результате адсорбции ионов с практически пол- д ным переносом заряда в области по- тенциалов более положительных в случае катионов и более отрицательных в случае анпонов относительно равновесного потенциала системы катион (или анион) — соответствующая фаза. Обработка электрокатализатора, приводящая к образованию на его поверхности адатомов постороннего элемента, обычно дает активирующие эффекты, не уступающие наблюдаемым при введении добавки промотора в объем основного металла, например сплавлением или совместным электроосаждением основного металла и добавки. Расход же промотирующей добавки при электрокатализе адатомами оказывается небольшим, что важно в случае дорогостоящей либо дефицитной добавки. [c.299]

    По современным воззрениям, активирующие свойства галоидных ионов основаны на очень высокой энергии адсорбции их металшичбской поверхностью и на вытеснении кислорода, необ-ходимото для пассивации. При этом в концентрированных растворах серной кислоты галоидные ионы, адсорбируясь на по-верхшсти некоторых сталей, сами могут приводить к пассивации, Такой эффект может быть объяснен следующим. При адсорбции галоидов точка нулевого заряда железа смещается в сторону положительных потенциалов одновременно с этим потенциал саморастворения железа в серной кислоте становится более электроотрицательным. В таком случае из-за изменения фр потенцнала процесс ионизации железа затрудняется. [c.407]

    При ориентированной адсорбции части молекул, соприкасающиеся с решеткой адсорбента, могут находиться в кристаллографическом соответствии с последним. Активными центрами для катализа являются центры роста и кристаллические зародыши. С учетом структуры поверхности в мультиплетной теории вводится представление о возможности образования различных поверхностных соединений, различающихся энергетическими характеристиками и строением. Связь реагирующей молекулы с одним атомом поверхности приводит только к адсорбции. Молекула недостаточно активирована для участия в реакции. Образование двухцентровых связей наиболее оптимально для последующего осуществления каталитической реакции. [c.73]

    В 1925 г. английский ученый Тейлор предложил теорию активных центров катализатора. По Тейлору активирую центры возникают в тех местах поверхности катализатора, где атомы слабее всего связаны с кристаллической решеткой, т. е. там, где силовое поле наименее иасыщено (выступы, пики поверхности грани кристаллов). Таких активных центров или ников очень мало. Они составляют всего лишь 0,17о от всей поверхности катализатора. Установлено, что адсорбция веществ наблюдается на поверхности многих катализаторов, однако только некоторые из них способны вызвать данную химическую реакцию и направить ее по определенному руслу. [c.147]

    Показано влияние адсорбции на равновесное образование граней. Предложено уравнение, связывающее относительную концентрацию ада-томов металла функциональной зависимостью с величиной г] катода, учи-тыва)ощее влияние адсорбции на работу когезии в определенном [Ьк1] направлении. Обнаружена преимущественная адсорбционная способность, влияющая на высокоретикулярные грани, промотирующие образование плоскостей с высокими значениями удельной поверхностной энергии (пассивирующая адсорбция), а также на низкоретикулярные грани при активирующей адсорбции. В обоих случаях адсорбция способствует увеличению степени анизотропности кристаллов. [c.25]

    Как видно из приведенных выше формул молекулярных сит, все они содержат кристаллизационную воду. В процессе производства эта вода удаляется, в результате чего материал активируется, т. е. приобретает способность адсорбировать воду или другие соединения. Первоначальное присутствие кристаллизационной воды и весьма прочная адсорбция воды и других полярных соединений послужили основанием для высказывавшихся предположений о возможном химосорбционном механизме адсорбции па молекулярных ситах. Однако в настоящее время доказана идеальная обратимость процесса на молекулярных ситах, и, следовательно, истинный механизм адсорбции является чисто физическим. [c.67]

    При наличии в электролите активирующих агентов, например хлорнд-иоиов, при определенном потенциале ф ер пассивное состояние нарушается, что ведет к ускорению анодного растворения. Объясняется это тем, что по мере смещения потенциала в сторону положительных значений усиливается адсорбция хлорид-ионов. Поскольку степень покрытия поверхности кислородом в местах, где имеются дефекты в структуре оксидной пленки, неодинакова, начинают преимущественно адсорбироваться хлорид-ионы, и вместо пассивирующего оксида образуется галогенид, обладающий хорошей растворимостью. Развивается питтинговая коррозия, которой особенно подвержены нержавеющие стали и другие легко пассивирующиеся металлы. [c.15]

    Происходит депассивация защитного слоя и коррозия развивается со значительной скоростью. Это объясняется увеличением а, 1сорб-ции активирующих агентов при увеличении потенциала. Адсорбция происходит на дефектных частях окисной пленки, в результате образуются сульфиты, сульфаты и карбонаты, хорошо растворяющиеся в воде, что приводит к питтинговой коррозии. [c.116]


Смотреть страницы где упоминается термин Адсорбция активирующая: [c.51]    [c.180]    [c.316]    [c.313]    [c.56]    [c.62]    [c.236]    [c.435]    [c.56]    [c.299]    [c.115]    [c.170]    [c.104]    [c.261]    [c.19]   
Электрохимия металлов и адсорбция (1966) -- [ c.59 , c.72 , c.134 , c.142 , c.143 , c.144 , c.149 , c.187 ]




ПОИСК







© 2024 chem21.info Реклама на сайте