Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностно-активные вещества влияние на растворение металлов

    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]


    Известно, что многие наполнители усиливают коррозию. Ранее показано, что дисульфид молибдена и графит, нанесенные на металл, усиливают величину коррозионного тока, ускоряют реакцию катодной деполяризации и анодного растворения и тем самым способствуют коррозии металлов. Влияние наполнителей на коррозионные, электрохимические процессы зависит от ряда факторов. Например, в маслах и смазках, содержащих поверхностно-активные вещества, введение этих же наполните,лей улучшает защитные свойства. [c.202]

    Возможность ингибирования растворения некоторых металлов и кальцита в водных растворах серной и соляной кислот путем добавления в электролит небольших количеств поверхностноактивных веществ (пассиваторов) была показана еще в тридцатые годы [28]. Было установлено интенсивное влияние жирных и ароматических кислот, причем механизм их действия был различным на металлах и кальците. На металлах (гидрофобная поверхность) ингибирование электрохимического растворения носило адсорбционный характер. В случае кальцита (гидрофильная поверхность) действие поверхностно-активных веществ было связано с сильным понижением смачиваемости кристалла образующиеся на его гранях пузырьки углекислого газа прочно прилипали к поверхности, уменьшая ее действующую площадь ( флотационное пассивирование ). [c.160]

    Как удалось установить [45], снижение предела выносливости под влиянием поверхностно-активной среды зависит от свойства и концентрации растворенных поверхностно-активных веществ, свойств растворителя, частоты изменения напряжений и физического состояния поверхности и приповерхностного слоя металла. Выявилось, что при адсорбции из неполярных углеводородных растворителей снижение предела выносливости достигает меньших значений, чем при [c.55]

    Основными источниками ошибок являются адсорбция поверхностно-активных веществ на электроде, приводящая к уменьшению токов электрохимического растворения во времени, взаимное влияние металлов на поверхности электрода, искажающее поляризационные кривые, нестабильные гидродинамические условия, адсорбция водорода и кислорода на поверхности электрода. [c.149]

    Экстрагенты (растворители) имеют различные свойства, которые используют в зависимости от механизма и технологических особенностей процесса экстрагирования. Так, например, для растворения, проводимого электрохимическим методом при очистке благородных и цветных металлов, большое влияние на скорость и эффективность процесса оказывает изменение состава раствора за счет введения в него активирующих ионов или поверхностно-активных веществ. [c.43]


    ВЛИЯНИЕ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА СКОРОСТЬ ЭЛЕКТРОХИМИЧЕСКИХ РЕАКЦИЙ И ДЕЙСТВИЕ ИНГИБИТОРОВ ПРИ РАСТВОРЕНИИ МЕТАЛЛОВ В КИСЛОТАХ [c.294]

    Адсор бция поверхностно активных веществ как фактор, влияющий на кинетику электродных процессов, подробно рассматривалась в предыдущих главах. Здесь достаточно указать, что адсорбционный слой, тормозящий разряд металлических ионов, неминуемо должен тормозить и обратную реакцию ионизации, причем каждое поверхностно активное вещество должно по-разному влиять на электрокристаллизацию и анодное растворение металла. Такой вывод вполне естествен, поскольку сама адсорбция поверхностно активных веществ, а значит, и состояние адсорбционного слоя, как правило, зависят от потенциала ионного слоя. Поэтому влияние одного и того же вещества на процессы электрокрнсталлизации и растворения металлических ионов, особенно при больших поляризациях, может оказаться резко различным. Наиболее вероятно проявление подобных различий в тех случаях, когда равновесный потенциал электрода лежит вблизи его потенциала нулевого заряда. [c.391]

    Теоретически установлено, что нефть в источнике залегания может образовываться из полярных компонентов, содержащих азот, серу, кислород, металлы, а также углеводороды с широким диапазоном изменения молекулярных масс, включая ароматические, нафтеновые, парафиновые вещества. Во время миграции нефти те компоненты, которые являются более полярными или более поляризующими, адсорбируются в первую очередь. Например, компоненты, содержащие аминовые нитрогены, порфирины, могут вести себя как катионы и адсорбироваться ria глинах. Это — одна из-причин формирования весьма неровных границ раздела нефть—вода, особенно в породах, содержащих небольшое количество глин. Концентрация активных компонентов вблизи первоначального водонефтяного контакта приводит к образованию более низких поверхностных натяжений между нефтью и водой, чем в точках, более отдаленных от водонефтяного раздела. Возможно также, что вода вблизи области залегания нефти может иметь-растворенные органические компоненты, такие, как нафтеновые-кислоты или их соли, которые в условиях неоднородного коллектора могут изменить поверхностное натяжение между нефтью-и водой в ту или иную сторону. Кроме того, на характеристику смачиваемости коллекторов заметное влияние оказывает их неоднородность по минералогическому составу, степень шероховатости , чистоты отдельных минеральных зерен, их окатанность, структура кристаллической решетки. Одни минеральные частицы обладают лучшей смачиваемостью, другие— худшей в зависимости от их химического состава и строения кристаллической решетки. [c.207]

    На величину возрастания касательной силы Р различные кислоты (НС1 и Н3РО4) при данных концентрациях оказали существенное влияние. При введении в растворы поверхностно-активных веществ (сульфанола и ОН-10) фиксируемая сила Рг уменьшилась на 20%, что связано с ингибирующим эффектом указанных ПАВ, ослабляющим химическое растворение окислов и электрохимическое растворение металла, а следовательно, и хемомеханический эффект. [c.256]

    Метод хронопотенциометрии позволяет получать информацию о механизме влияния поверхностно-активных веществ (ПАВ), не участвующих в электродном процессе, на электроосаждение и анрдное растворение металлов. При наличии в растворе поверхност-но-активных веществ характер ф — /-кривых существенно изменяется. Например, в присутствии тетрабутиламмония и бёнзоилпиперидина на катодных ф — /-кривых осаждения кадмия из сульфатных и перхло-ратных электролитов обнаружено скачкообразное смещение потенциала в отрицательную сторону [315] (рис. 6-1 т) — перенапряжение, т] ф). Для электролита, содержащего тетрабутиламмоний, величина скачка потенциала достигает 0,6 В. [c.167]

    Одним из авторов [7] было иззгчено влияние ряда факторов на процесс концентрирования металлов в ртутной капле. Было показано влияние на величину анодного тока растворения (следовательно, на коэффициент концентрирования) длительности пред-электролиза, потенциала, при котором его проводят, величины поверхности электрода, скорости перемешивания, температуры, наличия поверхностно-активных веществ. Зависимость анодного тока растворения от длительности предэлектролиза, объема раствора, а также радиуса капли может быть вычислена по уравнению, предложенному в работе [8]. Для использования электрохимического метода концентрирования в аналитических целях очень [c.164]

    Смачивание и возникновение флотационных сил оказывают также большое влияние на скорость гетерогенных реакций на границе твердое тело — жидкость, сопровождающихся выделением газов (продуктов химической реакции). Например, при взаимодействии кальцита СаСОз с водными растворами сильных кислот на грани кристалла выделяются пузырьки СОг. Благодаря гидрофильности кальцита краевой угол смачивания очень мал поэтому пузырьки не прилипают к поверхности кристалла и легко отделяются от нее. При растворении в воде поверхностно-активных веществ (жирных кислот) смачивание ухудшается, краевой угол растет и возникает флотационная сила, под действием которой пузырьки углекислого газа прилипают к поверхности кальцита. Прилипание затрудняет дальнейшее растворение кальцита — происходит так называемое флотационное пассивирование [343]. Аналогичные эффекты играют большую роль при электролизе и коррозии. В подобных процессах весьма часто на характер смачивания сильное влияние оказывают электрокапиллярные явления. Например, на катодной поляризации основан способ обезжиривания металлов (см. III. 6). [c.210]


    Водные растворы неэлектролитов, особенно неполярных веществ, могут производить обратный эффект и, таким образом, увеличивают долю компонента, имеющего структуру льда. Неполярная часть органических электролитов таких как мыла и поверхностно активные вещества, могут оказывать преобладающее влияние на увеличение доли компонента со структурой льда. Таким образом, растворенные вещества можно разделить на два класса структурообразовате-ли и структуроразрушители. В некоторые растворы для окончательной обработки поверхности металла могут вводиться оба типа добавок. Иногда это сделать невозможно, и тогда имеет место понижение растворимости менее эффективного компонента. Например, такое мыло, как пальмитат натрия, очень хорошо растворимо в воде, в основном, в виде На-(—ООС(СН2)иСНз. [c.332]

    Адсорбция поверхностно-активных веществ сопровождалась повышением водородного перенапряжения и замедлением анодного растворения железа. Разную адсорбционную способность железа I и II можно объяснить влиянием отжига на структуру металла и активность центров адсорбции. При отжиге происходит возврат и рекристаллизация железа, что приводит к снятию остаточных напряжений, переориентации кристаллов, уменьшению концентрации дислокаций и других несовершенств кристаллической решетки. Рентгенографический анализ железа I и II показал, что после шести часов отжига железа I при 600° С сохраняются некоторые остаточные, напряжения, в то время как железо II имеет более равновесную структуру. Межплоскостное расстояние между атомами железа после отжига при 600° С было заметно меньше й = 2,8643 А), чем величина, приводимая в литературе (й = 2,8664— —2,8661А) [136]. Для железа II эта величина близка к литературным данным ( =2,8661 А). При 600° С рекристаллизация идет медленнее, чем при 750° С, и шестичасовой отжиг при 600° С не снимает деформацию полностью (кристаллическая решетка сжата). [c.214]

    Необходимо отметить, что в зависимости от преимущественного влияния механических напряжений в электроде на кинетику анодной или катодной реакции (в том числе вследствие вторичных влияний — изменения адсорбции активных веществ, нарушения состояния поверхностных пленок и др.) можно наблюдать либо разблагораживание, либо облагораживание стационарного потенциала. Поэтому выявление взаимосвязи напряженного состояния металла и его электрохимических свойств должно проводиться только в условиях внешней поляриазции до значений потенциала, обеспечивающих преимущественное протекание реакции анодного растворения (т. е. в области тафелевского участка анодной поля- [c.168]

    Можно различать два основных механизма воздействия поверхностно-активных соединентгй на кинетику осаждения и растворения металлов. ПервыГ[ — блокирование поверхности при очень прочной адсорбции и при полном или частичном покрытии поверхности металла выделение и растворение металла на покрытой части поверхности практически прекращаются и могут начаться только при освобождении этой поверхности от адсорбированных соединений. Второй механизм действия адсорбированного вещества состоит в большем или меньшем замедлении пли ускорении одного из элементарных актов процесса выделения металла, именно разряда зюна. И.зменение скорости может быть вызвано, наиример, влиянием адсорбирующегося вещества на расиределение потенциала на границе фаз, т. е. на падение потенциала в растворе в непосредственной близости к поверхности металла и на самой границе. При этом изменяются адсорбция разряжающегося иона и скорость перехода электрона [98]. В этом случае изменение перенапряжения выделенпя и растворения металла в первом приближении должно быть равно изменению г з1, мерой чего может служить изменение потенциала нулевого заряда поверхности Л фи. Экспериментально последняя величина равна изменению потенциала максимума электрокапиллярной кривой, а в разбавленных растворах — также изменению потенциала минимума кривой емкости. [c.56]

    Тсрможение процесса анодного растворения металла при пассивировании в определенной степени может быть вызвано специфической и электростатической адсорбцией ионов, изменяющих величину ifi -потенциала и образующих поверхностные комплексы, оказывающие определенное влияние на скорость анодного растворения. Однако решающую роль играет изменение строения двойного электрического слоя на поверхности металла и непосредственно на границе металл — раствор. При этом, если происходит образование прочной связи адсорбированного (хемосорбирован-ного вещества с металлом на всей поверхности, то скорость процесса сильно замедляется. По такому механизму происходит пассивирование платины в растворах НС1, причем при адсорбции кислорода в раствор вытесняется эквивалентное число адсорбированных ионов хлора, что и вызывает снижение плотности тока анодного растворения платины по экспоненциальному закону (адсорбционно-электрохимический механизм Б. В. Эршлера). Очевидно, что при пассивировании возможно и неполное покрытие поверхности металла кислородом с образованием поверхностных соединений. В этом случае замедление скорости анодного процесса связано с блокировкой части активной поверхности. [c.353]

    Большую роль в миграции тяжелых металлов ифают растворимые низкомолекулярные фульвокислоты. Их эффективность в комплексовании ионов металлов выше, чем у гуминовых кислот. На долю фульвиновых и гуминовых кислот приходится 60-80% поверхностных растворенных органических веществ вод, причем содержание фульвокислот выше, чем содержание гуминовых кислот и колеблется от 1 до 100 мг/л и более, что в 10 -10" раз превышает концентрацию большинства микро- и следовых элементов. Поэтому фульвокислоты оказывают определяющее влияние на поведение микроэлементов и тяжелых металлов в почвенных и поверхностных водах. Металлы могут активно мигрировать в виде комплексных соединений с фульвокислотами в таких физико-химических условиях, при которых свободные катионы металлов выпадают в осадок. [c.139]


Смотреть страницы где упоминается термин Поверхностно-активные вещества влияние на растворение металлов: [c.285]    [c.284]   
Электрохимия металлов и адсорбция (1966) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы растворение

Поверхностная активность

Поверхностно-активные вещества

Растворение вещества

Ряд активности металлов



© 2025 chem21.info Реклама на сайте