Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий свойства, получение

    Влияние загрязнений сказывается на процессе лишь через раствор фторида алюминия. Свойства полученного из него криолита определяются присутствием или отсутствием в исходной кислоте соединения кальция и фосфора, [c.89]

    Хроматографию твердых парафиновых углеводородов, регенерированных из карбамидного комплекса, проводили в трехсекционной стеклянной колонке высотой 3 м. Высота каждой секции 1 м диаметры верхней 20, средней 15 и нижней 8 мм. Адсорбентами служили активированные силикагель крупнопористый, березовый уголь и окись алюминия. В качестве десорбирующих жидкостей применялись дихлорэтан, н-гексан, петролейный эфир, ацетон, бензол, этиловый эфир и их смеси. Адсорбенты загружали в такой последовательности активированный уголь (120 г), окись алюминия (120 г) и силикагель (50 г). Самый верхний слой колонки составляла смесь парафина с силикагелем (4,8 г парафина и 10 г силикагеля). Результаты хроматографирования и свойства полученных узких фракций парафина приведены в табл. 15. [c.87]


    Опыт 6. Гидроксид алюминия, его получение и свойства [c.188]

    Изучение свойств гидроксида алюминия. В пробирку наливают раствор соли алюминия и водный раствор аммиака. Наблюдают осаждение гидроксида алюминия. Половину полученного осадка переносят в другую пробирку. Оставшийся в первой пробирке осадок растворяют в М хлористоводородной кислоте, а осадок во второй пробирке — АМ растворе гидроксида натрия. [c.141]

    В две пробирки поместите по 4—6 капель раствора соли алюминия и осторожно добавьте в каждую по 1—3 капли 2 н. раствора едкого натра до образования осадка гидроксида алюминия. К полученному осадку прибавьте в одну пробирку — 3—5 капель 2 и. раствора соляной кислоты, в другую — такое же количество 2 н. раствора едкого натра. Что наблюдается в обоих случаях Щелочной раствор сохраните для опыта 5. Какой вывод о свойствах гидроксида алюминия можно сделать  [c.175]

    Алюминий. Свойства-оксид алюминия-соли алюминия-алюмотермическая реакция-термитная смесь-получение алюминия-боксит-алюминат натрия-двойные соли-квасцы-ацетат алюминия [c.470]

    Вакуум измеряют либо манометрами Мак-Леода или Пирани до - 10 мм рт. ст.), либо ионизационным манометром (до 10 ° мм рт. ст.). Для уменьшения продолжительности откачки целесообразно повысить температуру, но при этом не должно происходить спекания образца адсорбента или изменения природы поверхности. В какой-то мере выбор эффективных температур откачки связан с дополнительными опытами, поисками, ошибками, а также с некоторыми общими представлениями о физических и химических свойствах адсорбента. Некоторые инертные твердые тела, характеризующиеся высокой температурой плавления и устойчивой полиморфной модификацией, например корунд (а-окись алюминия), можно откачивать при температуре 1000°. Многие активные окислы, полученные осаждением или разложением при низких температурах, весьма чувствительны к нагреванию. Например, некоторые модификации двуокиси титана медленно спекаются в присутствии влажного воздуха [1] даже при 50°. Удельная поверхность некоторых модификаций активной окиси железа [2] и гидроокиси алюминия [101], полученных осаждением, также заметно уменьшается в результате откачки при 100°. Заметные структурные превращения в гидратированных кремнеземах и силикагелях [3] могут происходить при нагревании до 200° и даже иногда ниже 200°. Важно иметь в виду, что температура откачки подобного рода адсорбентов должна быть заметно ниже температуры начального процесса приготовления образца. [c.348]


    При введении в указанные гели А1-мыл или в растворы полиизобутилена твердой дисперсной фазы, например порошка металлического алюминия или магния, вязкость системы возрастает. Свойства полученных суспензий, их старение определяются свойствами структурированных дисперсионных сред, в которых они приготовлены [6]. [c.157]

    Если необходимо получить масло вязкостью при 99° 21,8 сст, температуру при полимеризации поддерживают 127— 138°. Небольшие количества катализаторного комплекса в масле нейтрализуют метанолом и известью. Масло подвергают перегонке с водяным паром, а катализаторный осадок разрушают добавлением водного раствора хлористого алюминия. Выделившееся масло имеет сильно насыщенный характер. Это сырое масло обрабатывают 6% хлористого алюминия в течение 3 час. нри температуре 120—150°, выделяют из смеси, нейтрализуют и после отгонки легких фракций используют в производстве цилиндрового масла. Этот процесс в том виде, в каком он осуществлен в Лейна, дает возможность получать компонент масла (74% на этилен), цилиндровое мас.по (8%) легкий масляный дистиллят (7%) используется для приготовления катализаторной смеси с хлористым алюминием. Свойства этих продуктов приведены в табл. 17. Для получения авиационных масел высоковязкий синтетический компонент масла смешивают с равными количествами очищенных избирательными растворителями минеральных масел. [c.375]

    Взаимодействие алюминия с неметаллами. 6. Гидроксид алюминия, его получение и свойства. 7. Гидролиз солей алюминия. 8. Взаимодействие галлия и индия с кислотами. 9. Растворение галлия и индия в водном растворе щелочи. 10. Гидроксиды галлия и индия. Их получение и свойства [c.8]

    Исследованы основные физические и механические свойства полученного нитрида алюминия. Удельное электросопротивление нитрида алюминия при температуре 20° С превышает 10 ом см и снижается до 9 10 ом -СЛ1 при нагреве до температуры 1200° С. Ширина запрещенной зоны составляет 4,26 эв. Коэффициент теплопроводности при нагреве от 20 до 1600° С уменьшается от 16 до 4 em/jii град. Коэффициент термического расширения составляет (4,8—5) 10 град- при температурах 20—1100° С [1]. [c.115]

    Штаудингер и сотрудники [5, 6] изучали самые разнообраз-ные катализаторы. Фуллерова земля, окись железа, окись магния, окись свинца, силикагель и активированный уголь оказались неэффективными. Ультрафиолетовое облучение и солнечный свет также не вызывали полимеризации. Однако в присутствии активированной окиси алюминия был получен полимер среднего молекулярного веса. В этой работе впервые была продемонстрирована зависимость свойств полимера от молекулярного веса (табл. 43). [c.175]

    Окись алюминия. Свойства этого сорбента можно также изменять подбором растворителя, сушкой и добавлением определенного количества воды или определенных веществ для получения модифицированной формы. Для анализа неорганических веществ чаще всего применяют силикагель или окись алюминия, очищенные от железа. Для этого их кипятят с концентрированной соляной кислотой, затем отмывают дистиллированной водой до отсутствия ионов хлора. После чего сорбенты сушат при 120° С в течение 48 ч. Окись алюминия сушат еще при 300—400° С, после этого добавляют определенное количество воды до нужной активности. [c.102]

    Сварной шов тщательно промывают горячей водой от остатков флюса и протравливают 5%-ным раствором азотной кислоты с 2% хромпика, подогретого до 50—60° С. После этого вновь промывают шов в воде и просушивают. Газовая сварка труб из алюминия обеспечивает получение механических свойств сварного соединения, равноценного основному металлу. [c.78]

    Свойства полученных соединений графита очень разнообразны. Например, соединения алюминия, галлия чувствительны к воде и разлагаются ею, а соединения индия, железа — устойчивы. Предполагается, что связь в этих соединениях ионная. Однако, если рассматривать графит как предельный член ряда аро- матических углеводородов, то можно ожидать образования особого типа соединений — комплексов графита с переходными металлами, в которых углеродная сетка графита играла бы роль ароматического лиганда. [c.124]

    Оксидные покрытия на алюминии получают при комнатной температуре анодным окислением алюминия (анодированием) в соответствующем электролите, например разбавленном растворе серной кислоты, при плотности тока 100 А/м или более. Образующееся покрытие из А12О3 может иметь толщину 0,0025—0,025 мм. Для улучшения защитных свойств полученный таким образом оксид подвергают гидратации. Для этого анодированное изделие обрабатывают несколько минут в паре или горячей воде (такой процесс называется наполнением пленки). Повышенная коррозионная стойкость достигается, если наполнение пленки производится в горячем разбавленном хроматном растворе. Оксидные покрытия можно окрашивать в различные цвета непосредственно в ванне анодирования или впоследствии. [c.247]


    В две пробирки поместить по 2-3 капли раствора соли алюминия и осторожно добавить в каждую по 1 -3 капли 2н раствора едкого натра до образова-ьшя осадка гидроксида алюминия. К полученному осадку прибавить в одну пробирку 3-4 капли раствора соляной кислоты, в другую - такое же количество раствора едкого натра. Что наблюдается в обоих случаях Какой вьевод о свойствах гидроксида алюминия можно сделать Написать в ммекулярном и ионном виде уравнения а) реакции получения гидроксида алюминия б) реакции взаимодействия гидроксида алюминия с кислотой и щелочью в) схему равновесия диссоциации гидроксида алюминия. Как с.мешается равновесие диссоциации гидроксида алюминия при добавлении избытка кислоты При добавлении избытка щелочи  [c.16]

    Оксидное анодизаци- онное Алюминий и его сплавы медь и ее сплавы магниевые сплавы титан и его сплавы Твердость покрытия на алюминии и его сплавах 28-44 НВ, электроизоляционные покрытия имеют пробивное напряжение до 600 В электрическая прочность возрастает при пропитке покрытия лаками эматале-вые пленки на алюминии и окисные на титане обладают износостойкими свойствами Защита от коррозии, придание электроизоляционных свойств получение светопоглощающей поверхности (медь), защита от задиров при трении (титан), грунты под окраску [c.373]

    Химические свойства фторуксусной кислоты не были подробно исследованы. Окисление и восстановление протекают с трудом. Для восстановления этой кислоты требуется такой мощный восстановитель, как гидрид лития-алюминия. Для получения трифторуксусной кислоты из трифторсоединений применялись смеси хромовой и серной кислот, а также перманганат калия, что свидетельствует о ее устойчивости по отношению к окислению. Трифторуксусная кислота обладает высокой термической устойчивостью ее можно нагревать в сосудах из боросиликатного стекла при 400° без заметного разложения [1003]. Это вещество является сильной кислотой, столь же сильно ионизированной, как и соляная, и легко образует соли и эфиры. Группа F3 не гидролизуется кислотами и основаниями [623]. Трифторуксусная кислота весьма гигроскопична [1042]. [c.445]

    Употреблявшиеся реагенты, выходы и свойства полученных продуктов приведены в табл. 3. Хлористый алюминий и галоидметан, если он при комнатной температуре жидкий, помеш.али в автоклав, который затем закрывали и погружали в смесь ацетона и сухого льда. Галоидметан, если он при комнатной температуре газ, и галоид-этилен вводили в автоклав под давлением. Автоклав помещали в качалку и нагревали. Образующиеся при реакции газообразные соединения выпускали и сжижали в ловушке, охлаждаемой смесью сухого льда и ацетона. Конденсат подвергали фракционированной перегонке. Жидкий и твердый остаток в автоклаве взмучивали с эфиром и встряхивали с соляной кислотой, содержащей куски льда. Эфирный экстракт промывали водой, сушили и фракционировали. [c.302]

    Рекомендуемый состав эфирно-гидридного электролита следующий А1С1з б/в — 270—400 г/л Ь1П — 5—8 г/л диэтиловый эфир — 1 л. При плотности тока 0,8—5 А/дм и комнатной температуре толщина покрытий достигает 50— 60 мкм. По своим физико-химическим свойствам полученные покрытия близки к электрометаллургическим маркам алюминия высокой чистоты. С увеличением плотности тока и уменьшением толщины слоя происходит измельчение структуры покрытий и увеличение микротвердости. Глубокой очисткой исходных компонентов можно добиться снижения микротвердости и отсутствия пористости. Прочность сцепления с основой зависит от предварительной подготовки поверхности подложки и увеличивается при обработке поверхности в растворах жирных кислот, например олеиновой. Кратковременное анодирование в щелочном растворе приводит к более прочному сцеплению с основой. Покрытия на [c.23]

    Свойства полученного сорбента — осушителя — во многом определяются видом используемого в качестве пористой основы носителя. К ним могут относиться силикагели, полученные по обычному способу (см. раздел Неорганические сорбенты ), смеси-композиции силикагеля с активным оксидом алюминия, синтезированные гидротермальным методом. Носителями могут быть различные формованные алюмосиликаты, содержащие 8102, А12О3, а также органически ориентирующие агенты формулы К1К2КзК40 и растворитель или смесь растворителей, смешанные оксиды алюминия, кремния, титана, циркония с добавкой ванадия и сурьмы. Кроме этого в качестве носителя могут использоваться усиленные осажденные кремнеземы. Они получены введением в силикаты натрия растворимых солей щелочных металлов или кислот сложных оксидов титана и циркония, а также носителей, полученных смешением различных макропористых компонентов, например глин или осажденного оксида алюминия, для образования макропористого носителя. [c.554]

    Свойства полученных образцов изучены различными методами химическим, термографическим, рентгеноструктурным, адсорбционным. Химический состав определяли методами, применяемыми в аналитической химии силикатов содержание щелочных металлов— на пламенном фотометре, двуокись кремния — весовым методом, окись алюминия — комплексометрически. В вакуумной установке с пружинными весами определяли адсорбцию газов и паров индивидуальных веществ. Термографические испытания проводили на пирометре Курнакова. Скорость нагрева составляла 25° С1мин., печь нагревалась до 950° С. Для идентификации структурного типа продукта перекристаллизации каолинита использовали рентгеноструктурный метод анализа (дифрактометр УРС-70 в Си Ка Излу . чении). [c.206]

    При этом очень важна быстрота выполнения анализов исходных растворов товарных продуктов — жидкого стекла и сульфата алюминия. Процентное содержание 62 и ЫааО в жидком стекле можно определить по методике, описанной в п. 6.2.2.1. Концентрацию по 8102) приготовленного из его рабочего раствора определяют титрованием с метилоранжем отмеренного объема 0,1 н. раствором соляной кислоты. Концентрацию раствора сульфата алюминия проверяют титрованием с фенолфталеином 0,1 к. раствором гидроксида натрия. Соотношение объемов этих растворов устанавливают прямым титрованием раствора жидкого стекла раствором сульфата алюминия. В отдельных пробах определяют время застудневания и флокулирующие свойства полученного раствора АК. Такой раствор должен иметь следующие показатели скорость осаждения стандартной суспензии гидроксида алюминия при дозе 8Ю2 10 мг/л — не менее 0,9 мм/с вязкость 0,5%-ного раствора — около 1,2 мПа с время застудневания выходящего из реактора раствора — 6—12 ч. [c.772]

    Указанное в уравнении (19) промежуточное соединение диэтила-люминийгидрид было впервые получено [16] из боргидрида алюминия. Однако Пиглер [122] оспаривает это утверждение, основываясь на физических свойствах полученного продукта. [c.271]

    В стальной вращающийся автоклав емкостью 0,65 л помещали 61 г (0,4 мюл.) ме-шлсалицилата, 150 мл диоксана и 11,5 г (0,05 мол.) безв. ацетата кадмия. Автоклав закрывали, продували ацетиленом, подавали 18 л ацетилена и нагревали 1 час при 205—212°. По охлаждении реакционную смесь выгружали и фильтровали. Из фильтрата отгоняли диоксан и фракционировали остаток в вакууме. Фракцию с т. кип, 90—95°/2—3 мм (45 i-, 63% от теории) дважды встряхивали с 5 г окиси алюминия ( для-хроматографии II ст, активности ), для сорбции примеси исходного метилсалицнлата, и ректифицировали в вакууме. Физические свойства полученного о-вииилокси-метил-бензоата приведены в табл. 6. Литературные данные т. кип, 105—112°/4 мм [4], [c.54]

    Защита магния. В последнее время значительно расширяется техническое применение магния и его сплавов удельный вес магния меньше, чем алюминия, а механические свойства не хуже. Предметы, изготовленные из магния, на 25—30% и на 70—75% легче, чем подобные изделия из алюминия и железа соответственно. Однако магний и его сплавы слабее противостоят коррозии. На их поверхности также самопроизвольно образуется окисная пленка, но ее защитное действие меньще, чем у окиси алюминия. Защитное действие окисной пленки можно существенно повысить, если нагреть магний в растворе хромата калия, содержащем азотную кислоту, или предварительно обработать его раствором плавиковой кислоты. Для дальнейщего улучшения защитнь х свойств полученной окисной пленки ее можно покрыть краской. [c.283]

    Металлический алюминий был получен в первый раз Вёлером, в 1827 г., при действии калия на хлористый алюминий. Вёлер получил этот металл сперва в виде серого порошка, а потом (1845) и в сплошном виде белого металла, не окисляющегося на воздухе и трудно действующего на кислоты. Вследствие громадного распространения соединений алюминия, желательно было изучить в подробности способы получения этого металла, что и выполнил (1845) Генрих Сент-Клер Девилль, знаменитый своим учением о диссоциации. Его приемы применены были затем в технике и дали уже значительные массы алюминия, но опыт в большом виде показал, что металлический алюминий, обладая большою легкостью и прочностью и малою изменчивостью на воздухе, очень пригоден для некоторых изделий, однако, по своим свойствам оказался не столь пригодным для технических потребностей, как то предполагали первоначально. Действительно, хотя азотная и многие другие кислоты (особенно органические) мало действуют на него, но щелочи, слабый раствор N1-1 , его соли, даже влажная поваренная соль, пот и т. п., растравляют его, и вследствие того предметы, сделанные из алюминия, часто страдают с поверхности, изменяются и не могут заменить, как предполагалось прежде, драгоценных металлов, от которых алюминий отличается большею легкостью. Но сплавы (особенно с медью, напр., алюминиевая бронза), образуемые алюминием, оказались обладающими драгоценными свойствами и пригодными ко многим приложениям. [c.125]

    Изучение свойств металлического алюминия. Алюмотер-мия. Получение и свойства окиси и гидроокиси алюминия. Соли алюминия, их получение и свойства. Алюминат натрия. [c.62]

    Вопрос о существовании л речисленн ых выше пяти фосфидов алюминия нельая считать окончательно разрешенным. Данные различных исследователей о составе и свойствах полученных продуктов противоречивы и недостаточ ны. [c.33]

    В 1944 г. С. М. Вайнштейн и А. И. Динцес получили продукт, подобный суперолу, полимеризацией в присутствии хлористого алюминия изобутилена, содержащегося в крекинг-газах. Свойства полученного продукта, названного изолом, подобны суперолу [22]. [c.485]

    Оксид алюминия. Свойства этого сорбента также можно изменять подборо < растворителя, высушиванием и добавлением определенного количества воды или других веш,еств для получения модифицированной формы. Для анализа неорганических веществ чаще всего применяют оксид алюминия. Его, как и силикагель, очищают от примесей железа, для чего кипятят с концентрированной соляной 1СИСЛОТОЙ, затем отмывают дистиллированной водой до полного отсутствия ионов хлора, сушат в течение 48 ч при 300—400° С. После этого добавляют определенное количество воды до нужной активности. [c.123]

    Опыт изомеризации -бутана посредством бромидов этилалюминия и этоксиалюмииия. Одно из возможных объяснений действия кислорода на раствор бромистого алюминия в н-бутане и каталитических свойств полученного комплекса нижнего слоя заключается в предположении об образовании бромида алкоксиалюминия (гипотеза Б). Поэтому было интересно установить, действуют ли как катализаторы [c.64]

    Для того чтобы сравнить влияние А120з-связующего и глин-связующих на кинетические свойства полученных гранул цеолита с помощью раствора 5,6 оксинитрата алюминия, глуховской и латненской глин, были приготовлены образцы грану. лироваппых цеолитов. Благодаря строго одинаковым условиям приготовления опи практически не отличались по суммарному объему вторичных пор и распределению их по эквивалентным радиусам [9], а также по величине равновесной емкости по парам воды. [c.226]

    Задачей дальнейшего исследования было выяснение влияния термической обработки калиевоалюмосиликатных стекол на сорбционные свойства продуктов их выщелачивания. Опыты проводились на стеклах 35/1—35/7, отожженные и закаленные образцы которых выщелачивались в строго одинаковых условиях. Данные о содержании окиси алюминия в полученных пористых стеклах представлены в табл. 2, а на рис. 3 приведены результаты их сорбционного исследования. [c.232]

    Силикатные стекла состоят в основном из SiO2 и кроме того из оксидов щелочных и щелочноземельных металлов и оксида алюминия. Для получения необходимых свойств в их состав включают модифицирующие компоненты, например небольшое количество борного ангидрида (в йен-ских стеклах), оксид свинца (в хрустале), оксиды цинка или редкоземельных металлов (в оптических стеклах). При этом стекла не являются стехиометрическими химическими соединениями и могут иметь различное соотношение компонентов. [c.126]


Смотреть страницы где упоминается термин Алюминий свойства, получение: [c.77]    [c.8]    [c.11]    [c.11]    [c.190]    [c.607]    [c.361]   
Справочник по общей и неорганической химии (1997) -- [ c.48 , c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий Свойства

Алюминий получение

получение и свойства



© 2025 chem21.info Реклама на сайте