Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сорбенты см также Адсорбенты

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]

    Недостатки адсорбционных способов газоочистки заключаются прежде всего в периодичности процесса, низкой эффективности реакторов периодического действия, а также в высокой стоимости регенерации адсорбентов. Непрерывный способ адсорбционной очистки газов устраняет эти недостатки, но для него требуются высокопрочные сорбенты, которые для большинства процессов еще не разработаны. [c.237]

    Часто используются также непористые адсорбенты. К ним относятся технический углерод (сажи) — продукт неполного сгорания летучих органических соединений, а также белые сажи , т. е. высокодисперсный кремнезем, получаемый из крем-нийорганических соединений при высоких температурах. Эти сорбенты, как правило, высокодисперсны (размер зерна менее [c.231]

    Произведем теперь мысленно своеобразное обращение нашей системы. Пусть дисперсионной средой служит твердое тело, а дисперсной фазой — пустоты в нем (поры). Переход от крупнопористых (тем более — от непористых) сорбентов к адсорбентам микропористым также связан вначале с накоплением количественных различий, которые неизбежно приводят к различиям качественным исчезает поверхность раздела фаз, и система сорбент — сорбат становится в известном смысле однофазной. [c.232]

    Разделительная способность как адсорбционной, так и распределительной хроматографической колонки в значительной степени зависит от развития удельной поверхности сорбента. Поэтому в распределительной хроматографии неподвижную жидкость наносят на твердые зерненые носители с большой удельной поверхностью. Однако следует учитывать, что наряду с растворением компонентов разделяемой смеси в этой жидкости может иметь место также и адсорбция на поверхности носителя при недостаточном покрытии жидкостью. Кроме того, возможны адсорбционные процессы на границах газ — жидкая пленка и жидкость — твердый носитель. Это особенно относится к хроматографии на модифицированном сорбенте. Этот метод является промежуточным между газо-жидкостной и газо-твердой хроматографией. Он основан на том, что твердый адсорбент, являющийся неподвижной фазой, покрыт (модифицирован) небольшим количеством жидкости. В этом случае разделение обусловлено как адсорбцией на поверхности раздела газ — твердое тело, так и абсорбцией в жидкости. [c.17]


    Так, установлено [1091, что при адсорбции нитроцеллюлозы из смеси циклогексан — ацетон на кукурузном крахмале адсорбируется большее количество по сравнению с адсорбцией на картофельном крахмале. Авторы связывают это с разной удельной поверхностью адсорбента. Краус и Дюгоне [761 получили аналогичные ре.чультаты при адсорбции сополимера стирола с бутадиеном на сажах с различной удельной поверхностью. Они показали, что с увеличением удельной поверхности сажи растет величина адсорбции. Увеличение удельной поверхности целлюлозных сорбентов также приводит к возрастанию адсорбции поливинилацетата из растворов в этилацетате [113]. [c.64]

    Для очистки сточных вод используют адсорберы с неподвижным и плотно движущимся слоем поглотителя, аппараты с псевдоожиженным слоем адсорбента, а также аппараты, в которых обеспечивается интенсивное перемешивание обрабатываемой воды с порошкообразным или пылевидным сорбентом. Чаще применяют напорные фильтры с плотным слоем гранулированных активных углей (табл. 12). [c.96]

    Другой адсорбент—активированная окись алюминия (алюмогель)—также применяется в основном для разделения углеводородов. Как и силикагели, окись алюминия является полярным сорбентом и вследствие наличия поверхностных гидроксильных групп проявляет склонность к образованию водородных связей и взаимодействию с непредельными углеводородами. Поэтому порядок выхода угле- [c.103]

    До войны ГИВД и авторами предлагалось использовать для нейтрализации продуктов реакции формованную гашеную известь. Этот способ требовал нейтрализатора большого объема, превышающего объем гидра-татора в 1,5 раза. Изыскание других, более эффективных, чем формованная известь, нейтрализующих сорбентов также не дало положительных результатов. Основным недостатком ирименения адсорбентов в качестве нейтрализующих веществ является трудность полной нейтрализации кислых паров в течение всего пробега. [c.571]

    Сорбентами называют твердые тела или жидкости, способные поглощать (сорбировать) в большом количестве газообразные, парообразные и растворенные вещества. Из большого числа сорбентов в настоящем разделе приведены некоторые наиболее распространенные твердые сорбенты. Их называют также адсорбентам и—от слова адсорбция. Процесс адсорбции представляет собой сгущение, уплотнение растворенного или парообразного вещества на поверхности сорбента. Поглощающая способность твердых сорбентов обусловлена их пористой структурой,т. е. наличием огромного количества мельчайших пор (пустот) и соответственно огромной внутренней суммарной поверхностью этих пор (удельной поверхностью). В определенных условиях (нагревание, продувка) поглощенные вещества выделяются обратно из сорбентов (десорбция), после чего сорбенты обычно вновь бывают способны к сорбции. [c.289]

    Сорбентами называют твердые тела или жидкости, способные поглощать (сорбировать) большие количества газообразных, парообразных или растворенных веществ. Из числа разнообразных поглотителей в настоящем разделе описаны некоторые наиболее распространенные твердые сорбенты, называемые также адсорбентами (от слова адсорбция). Процесс адсорбции представляет собой переход вещества из газа, пара или жидкости в Твердый сорбент, на поверхности которого концентрируются молекулы поглощаемых веществ. Поглотительная способность твердых сорбентов обусловлена их пористой структурой, т. е. наличием огромного количества мельчайших пор (пустот), и соответственно огромной суммарной удельной поверхностью (обшая поверхность веществ в единице объема). [c.248]

    Адсорбция оксидов азота твердыми сорбентами (силикагелем, алюмогелем, алюмосиликатом, цеолитами, активным углем и др.). Из-за дефицитности и малой адсорбционной емкости адсорбентов, больших затрат тепла на регенерацию не нашла широкого применения. Для этой цели предложены природные адсорбенты (торф, лигнин, фосфатное сырье, бурые угли), которые не нуждаются в регенерации. Адсорбционные методы имеют определенные преимущества перед абсорбционными— компактность и простота конструкции аппаратуры, отсутствие жидких сточных вод. Недостатки методов — цикличность (адсорбция — десорбция), необходимость проведения регенерации при высоких температурах с последующей утилизацией оксидов азота, а также поглощение адсорбентом не только оксидов азота, по и других примесей, включая влагу. [c.67]

    Многие исследователи считают, что разделительные процессы на пористых полимерах отличаются от процессов газо-жидкостной и газо-адсорбционной хроматографии, что здесь одновременно протекают процессы адсорбции и абсорбции. Следует отметить, что пористые полимеры применяются как высокоселективные адсорбенты в газо-адсорбционной и жидкостно-адсорбционной хроматографии для разделения многокомпонентных смесей, а также и в качестве носителей в газо-жидкостной хроматографии. По-видимому, этим сорбентам принадлежит большое будуш,ее. [c.58]


    Величины отнесенные к единице массы адсорбента или жидкой фазы и приведенные к нормальной температуре, являются характеристиками свойств системы сорбат — сорбент. Поэтому они могут быть использованы для расчета некоторых физико-химических свойств, а также для качественной характеристики веществ. [c.42]

    Хроматографический метод, предложенный в 1903 г. М. С. Цветом, основан на различной адсорбции веществ па слое сорбента. При движении раствора смеси или газа происходит многократная адсорбция и десорбция веществ, приводящая к тому, что в верхней части адсорбента, находящегося, например, в колонке (рис. 26), остается вещество, которое лучше адсорбируется в нижней части — вещество, которое адсорбируется хуже. Если и дальше приливать в верхнюю часть колонки раствор смеси двух веществ, то из нее будет вытекать раствор хуже адсорбированного вещества. Можно также колонку с адсорбентом промыть раствором какого-либо комплексообразователя, дающего прочные комплексные соединения с одним из адсорбируемых веществ в этом случае это вещество и будет вымываться из колонки. [c.73]

    Явление капиллярной конденсации состоит в том, что конденсация пара в тонких капиллярных порах твердых адсорбентов происходит при давлениях меньших, чем давление пара над плоской поверхностью (при условии смачивания конденсатом поверхности адсорбента). В соответствии с законом Томсона (Кельвина), чем тоньше поры адсорбента, тем при меньшем давлении происходит конденсация. Это используется, в частности, при рекуперации (возвращение в производство) летучих растворителей в технологических процессах, а также для анализа геометрии порового пространства сорбентов и др. Связь закономерностей капиллярной конденсации со структурой порового пространства была детально изучена А. В. Киселевым с сотр. [c.36]

    СОРБЦИЯ (от лат. зогЬео — поглощаю) — поглощение вещества из окружающей среды твердыми или жидкими телами. Поглощающее тело (поглотитель) наз. сорбентом, поглощаемое вещество — с о р б а -том, пли сорбтивом. Виды С. абсорбция, адсорбция, хемосорбция и капиллярная конденсация. Абсорбция— поглощение сорбата (точнее — абсорбата) всем объемом сорбента (точнее — абсорбента). При абсорбции молекулы абсорбата диффундируют (см. Диффузия) через поверхность раздела фаз и распространяются по объему абсорбента, внедряясь между молекулами или узлами кристаллической решетки. Если абсорбент — жидкое те.то, то абсорбция из газовой фазы тождественна растворению, а абсорбция из несмешивающейся жидкой фазы — экстракции. Поглощение газов металлами, а также некоторыми другими материалами наз. окклюзией (см. также Абсорбция). Адсорбция — поглощение сорбата (точнее — адсорбата) поверхностью сорбента (точнее — адсорбента). При физической, т. е. не сопровождающейся хим. превращениями, адсорбции молекулы адсорбата удерживаются у поверхности силами межмолекуляр. взаимодействия. Они образуют адсорбционный слой толщиной в одну (моно-молекулярная адсорбция), две или несколько молекул (нолимолекуляр-ная адсорбция), сохраняя способность диффундировать вдоль поверхности и покидать ее вследствие теплового движения (см. Десорбция). Энергия связи адсорбированных молекул о поверхностью адсорбента при физ. адсорбции обычно составляет несколько ккал моль (см. Адсорбция). X е м о с о р б ц и я — поглощение сорбата с образованием различных химических соединений в объеме или поверхности сорбента. Хемосорбция обычно сопровождается тепловым эффектом в несколько десятков, иногда сто и более ккал/моль (см. также [c.416]

    В настоящее время стадия адсорбции имеется ырактически во всех технологических схемах получения нефтяных масел. Адсорбенты используют вместо избирательных растворителей в технологии производства масел для очистки дистиллятов или для доочистки с целью повышения стабильности масел, улуч-дюния их цвета, удаления следов растворителей и. т. п. [1—4]. Стало общепринятым в процессах очистки дистиллятов использовать синтетические адсорбенты , в частности алюмосиликатные [3, 4]. Для доочистки масел наряду с синтетическими адсорбентами все большее примспение находят природные диснерс-лые кремнеземы и глины [1, 2]. Очень перспективно применение природных сорбентов также для регенерации отработанных масел [5, 6]. [c.149]

    Разделение жидких и газообразных смесей с помощью синтетических цеолитов основано на особенностях кристаллического строения последних, т. е. на строго определенном, моноднсперсном размере наружных пор макрокристаллов в сочетании с наличием довольно значительных внутренних полостей, соединенных каналами с входными порами. При этом размеры пор цеолита соизме-шмы с размером молекул большинства органических веществ (10 —10" мкм). Лри соприкосновении смеси веществ с макрокристаллом цеолита молекулы с размером, меньшим диаметра пор, проходят внутрь полостей и задерживаются там за счет адсорбционных сил, в то время как молекулы больших размеров отсеиваются (в связи с этим цеолиты и некоторые другие аналогичные адсорбенты получили название молекулярных сит). Подавая затем к поверхности цеолита вместо исходной смеси соответствующий десорбент (элюент), также проходящий через поры цеолита и способный вытеснить ранее адсорбированные молекулы, можно с любой необходимой четкостью разделить исходную смесь. Поскольку цеолиты являются довольно дорогим сорбентом, применение их на практике рентабельно лишь при нахождении условий, обеспечивающих длительный срок работы (порядка года). [c.307]

    Изложенный подход интересен еще и потому, что для получения надежной информации о содержании суперэкотоксикантов в атмосфере необходимо отбирать большие объемы проб воздуха для ПАУ - до 1000 м (28], а для диоксинов - до 2000 м [5] Кроме того, для улав швания и накопления паров этих вешеств, а также субмикронных аэрозо.11ьных частиц необходимо применять как селективные твердые сорбенты, так и жидкие реагенты, криогенные ловушки и т.д. Они должны обеспечивать поглощение определяемых компонентов в различном агрегатном состоянии без изменения их свойств, что практически трудно осуществить Применение адсорбентов требует их тщательной очистки от примесей, мешающих анализу Особая тщательность необходима при анализе газов, выбрасываемых термическими установками промышленных предприятий и МСЗ. Для получения достоверных данных температура в месте отбора пробы не должна превьппать 200 °С, поскольку сорбент может взаимодействовать с содержимым горячих газовых выбросов. [c.124]

    Другой способ получения активного углерода из каменных углей заключается в модифицировании каменного угля щелочными металлами, что обеспечивает способность угля к поглощению веществ большей молекулярной массы, а также высокую скорость процессов адсорбции-десорбции. Традиционные методы получения адсорбет-ов из ископаемых углей приводят обычно к продукту с широким распределением пор по размерам, в связи с чем углеродные сорбенты из углей имеют низкую селективность и относительно невысокую удельную поверхность и, как следствие, ограниченные возможности для практического использования. Было установлено, что свойства угля во многом определяются кислородсодержащими группами. В каменном угле, кроме кислородсодержащих, существенную роль играют ароматические и гидроароматические фрагменты. Исходя из этого, модифицирующие обработки были направлены на карбоксильные, карбоксилатные, гидроксильные и другие кислородсодержащие группы, а также на ароматические структуры. Химическое модифицировании каменных углей приводит к получению адсорбентов, сорбирующих метиленовый голубой до 150-170 мг/г, йод до 130%. Полученные результаты явились предпосылкой изучений свойств углей с целью получения из них углеродного материала с высокой удельной поверхностью. [c.51]

    Согласно этой теории причина размывания хроматографических полос обусловлена диффузией в газе и порах сорбента, а также массообменом между газом и неподвижной фазой. Сама диффузия имеет сложный характер. В реальной хроматографической колонке могут происходить следующие виды диффузии а) молекулярная диффузия, обусловленная тепловым движением молекул б) вихревая диффузия, вызываемая завихрением газа вокруг зерен насадки в) недостаточная скорость массопередачи из газовой фазы к поверхности неподвижной жидкости (в ГЖХ) или к поверхности твердого адсорбента (в ГАХ), обусловленное внешней диффузией, или замедленной внешнеди( узионной массопередачей недостаточная скорость миграции молекул адсорбированного вещества с поверхности неподвижной фазы внутрь неподвижной фазы, обусловленное замедленной внутренней диффузией или замедленной внутридиффузионной массопередачей. Последние два вида диффузии направлены поперек [c.52]

    Как ВИДНО из данных, приведенных в табл. 7.3, один и тот же сорбент МОЖНО применять в процессах разделения, протекающих по разным механизмам. Так, широко используемый адсорбент А12О3 может также обладать свойствами ионита в том случае, если подвижная фаза содержит воду, что вызывает образование ОН-групп на поверхности А12О3. При разделении веществ, основанном на использовании их различной растворимости в двух несмешивающихся жидких фазах, в качестве стационарной фазы используют жидкость, заполняющую пористый носитель (например, целлюлоза — вода). Но в щелочной среде разделение веществ на целлюлозе (целлюлозу применяют, например, в виде бумаги) сопровождается процессами ионного обмена с гидроксильными и-карбоксильными группами самого носителя  [c.343]

    Однако гравиметрическую форму можно получить такисс другими способами. Так, например, при определении зольности твердого топлива навеску этого топлива сжигают и взвешиванием измеряют массу оставшейся золы. Для оцределения адсорбированной или кристаллизационной воды анализируемое вещество нагревают до температуры, при которой эта вода улетучивается. Гpaви Leтpи-ческой формой служит нелетучий остаток, массу воды находят по уменьшению массы вещества при нагревании. Можно также поглощать пары воды подходящим адсорбентом, например безводным перхлоратом магния. Гравиметрической формой тогда служит ал-сорбент с поглощенной водой, о массе воды судят по увеличению массы адсорбента. [c.140]

    Углеродные адсорбенты и материалы высокой чистоты могут найтч широкое применение в технологии особочистых веществ, производстве полупроводниковых приборов, воднохимических цехах атомных к тепловых электростанций, производстве катализаторов и электродов для химических источников тока, а также в качестве сорбентов для рекуперации паров ЛВЖ, В докладе рассмотрены основные способы получения пористых углеродных материалов высокой чистоты и показано, что метод экстракции минеральных примесей кислотами в наибольшей мере подготовлен для промышленного примепе ния. Сопоставляются результаты экономических расчетов про изводства углеродных адсорбентов по двум различным технологическим схемам. Показано, что устранение использования в процессе экстракции минеральных примесей из промышленных активных углей плавиковой кислоты позволяет снизить себестоимость одной тонны углеродных адсорбентов высокой чистоты на 5000 руб. [c.151]

    Адсорбционную хроматографию с использованием в качестве наполнителя колонок силикагеля очень широко применяют в классическом варианте жидкостной хроматографии. При однократном разделении силикагель оказывается достаточно удобным, эффективным и недорогим сорбентом. Очень интенсивно используют силикагель в качестве адсорбента для ТСХ (также однократно). Адсорбционная активность силикагеля достаточно легко воспроизводится путем определенных операций гидроксилирования, сушки, активации. Большой опыт применения силикагеля в ТСХ и колоночной хроматографии, естественно, стимулировал широкое его использование на ранних стадиях развития ВЭЖХ. [c.16]

    Существенные недостатки адсорбентов, особенно оксида алюминия, связанные с частыми случаями перегруппировок чувствительных к катализу соединений, их разложения, необратимой сорбции, также общеизвестны и неоднократно отмечались в литературе. Необратимо сорбирующиеся вещества, накапливаясь на начальном участке колонки, меняют природу сорбента, могут привести к повышению сопротивления колонки или даже к полной ее забивке. Последний недостаток может быть устранен путем использования предколонки, которая по мере повышения сопротивления и забивки заменяется на новую или перезаполняется новым сорбентом. Однако необратимая сорбция, имеющая место и в этом случае, приводит к получению хроматограммы, на которой полностью или частично отсутствуют чувствительные к сорбции или каталитическому разложению компоненты пробы. [c.19]

    Адсорбенты. Осн адсорбент-кремнезем (силикагель), гидроксилированный или химически модифицированный, используют также А12О3, углеродные адсорбенты, полимеры, содержащие ионогенные, комплексообразующие группы или гр>ппы, способные к специфич взаимод с биологически активными в-вами Размер частиц силикагеля в аналит колонках 3-10 мкм, в препаративных-20-70 мкм Малый размер частиц увеличивает скорость массообмена и повышает эффективность колонки Совр аналит колонки длиной 10-25 см, заполненные силикагелем с размером частиц 5 мкм, позволяют разделить сложные смеси из 20-30 компонентов При уменьшении размера частиц до 3-5 мкм возрастает эффективность колонки, но и растет ее сопротивление и для достижения скорости потока элюента 0,5-2,0 мл/мин требуется давление (1-3) 10 Па Силикагель выдерживает такой перепад давления, гранулы же полимерных сорбентов более эластичны и деформируются В последнее время разработаны механически прочные густосетчатые полимерные сорбенты макропористой структуры, приближающиеся по своей эффективности к силикагелям Форма частиц сорбента размером 10 мкм и выше не оказывает большого влияния на эффективность колонки, однако предпочитают сферич сорбенты, к-рые дают более проницаемую упаковку Внутр структура частицы силикагеля представляет собой систему сообщающихся каналов Для Ж х используют сорбенты с диаметром пор 6-25 нм и уд пов-стью 600-100 м г [c.153]

    ХЕМОСОРБЦИЯ (от хелм... и сорбция), поглощение ткр-дым телом (адсорбентом) или жидкостью (абсорбентом) в-ва из газовой фазы с образованием хим. соед. частный случай сорбции (в зависимости от вида сорбента процесс также наз. абсорбцией или адсорбцией с хим. р-цией). X. обычно сочетают с обратным процессом - десорбцией, при к-рой образовавшиеся в результате прямого процесса хим. соед. разрушаются и происходит выделение поглощенного в-ва. В ряде случаев желательным результатом X. являются собственно продукты р-ции. [c.228]

    В заключение необходимо отметить, что хроматография является не только эффективным методом анализа и очистки, но также и методом исследования адсорбционных процессов и систем адсорбент — основной компонент — микроиримеси. Известен хроматографический метод определения изотерм адсорб ции и теплот адсорбции, метод определения величин поверхности, коэффициентов активности и т. д. Даже в тех случаях, когда чу ствительность детектора не позволяет работать с ми-кронримегями, прогнозирование возможности очистки может быть сделано при исследовании макроконцентраций, [Юскольку времена удерживания при линейных изотермах не зависят от исходной концентрации. Таким путем в работе [40] был подобран сорбент для очистки СгеСЦ от фосфора — силикагель с о-нитроанизолом. [c.179]


Смотреть страницы где упоминается термин Сорбенты см также Адсорбенты: [c.518]    [c.689]    [c.305]    [c.124]    [c.428]    [c.65]    [c.215]    [c.57]    [c.219]    [c.244]    [c.187]    [c.163]    [c.81]    [c.43]    [c.411]    [c.153]    [c.151]    [c.168]   
Справочник инженера - химика том первый (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сорбенты



© 2025 chem21.info Реклама на сайте