Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение сульфата алюминия из гидроксида алюминия

    ПОЛУЧЕНИЕ СУЛЬФАТА АЛЮМИНИЯ ИЗ ГИДРОКСИДА АЛЮМИНИЯ [c.48]

    Упр. 20. К раствору, содержащему 6,84 г сульфата алюминия, прибавлен раствор, содержащий 6 г едкого натра. Определить массу полученного при этом гидроксида алюминия. [c.42]

    Пример 3. Определите эквивалентную концентрацию (моль/л) сульфата алюминия, если в 250 мл раствора содержится 8,57 г соли. Раствор будет использован для получения гидроксида алюминия по обменной реакции. [c.104]


    Получение. Б. получают восстановлением оксида Б, алюминием при 1100—1200 °С в вакууме. Оксид Б. получается прокаливанием нитрата Б. при 1000—1050 °С (выделяются оксиды азота) или карбоната Б. с углем при 1200°С (выделяется СО), а гидроксид Б.— прокаливанием карбоната Б. и гашением образовавшегося оксида Б. водой или взаимодействием раствора хлорида Б. с гидроксидом натрия. Хлорид Б. получается взаимодействием сульфида Б. с хлороводородом или сплавлением сульфата Б. с хлоридом кальция и углем при 770—1100 °С. Карбонат Б. получается барботированием СОг через водный раствор сульфида Б. при 30—40 С смешением растворов кар-i боната натрия и сульфида или хлорида Б. при 70—80 °С, Сульфид Б. образуется при сплавлении сульфата Б. и угля при 1000—1100°С (отходящие газы содержат 5% СО). Есть несколько способов получения сульфата Б. очистка барита осаждение серной кислотой или растворами сульфатов из растворов солей Б. как побочный продукт при сульфатной очистке соляных рассолов. Нитрат Б.— продукт обменной реакции в водных растворах между хлоридом Б. и нитратом натрия (или азотной кислотой) или растворения карбоната Б. в азотной кислоте. Взаимодействие сульфида Б. с серой дает полисульфид Б, Титанаты Б. получают сплавлением карбоната Б. с окСидом титана(1У), а цирконаты Б.— сплавлением оксида, гидроксида или карбоната Б. с оксидом циркония(IV). Продуктом сплавления ок( ида Б. с оксидом алюминия является метаалюминат Б. При совместном отжиге порошков оксидов Б. и железа(III) при 1000—1400 °С получается феррит Б. [c.134]

    Предлагают [61] непрерывные способы получения сульфата алюминия и в другом аппаратурном исполнении. Так, в одном из них водная суспензия гидроксида алюминия и серной кислоты в стехиометри-ческом количестве подается в смесительные форсунки реактора, в котором находится не менее 30 с. После охлаждения до 100 °С в проточном холодильнике она продавливается через сопло и прорези, в результате чего образуется мелкогранулированный продукт. [c.53]

    Получение гидроксида алюминия методом непрерывного однопоточного осаждения из растворов основного сульфата алюминия и низкомодульного алюмината натрия позволяет получать оксид алюминия, повышающий активность катализаторов гидрогенизационных процессов [266]. Однако в промышленных условиях эта технология до конца не отработана, хотя имеются реальные предпосылки для получения указанным способом активного оксида алюминия высокого качества [267] . [c.125]


    Эффективным направлением использования осадков, особенно в случае очистки маломутных вод, когда содержание оксида алюминия в них может достигать 40 % и более (на сухую массу), является получение (регенерация) коагулянта. Регенерацию коагулянтов целесообразно осуществлять на станциях большой и средней мощности, где потребляются большие количества коагулянтов и образуются большие объемы осадков. Коагулянты можно регенерировать путем растворения продуктов гидролиза в кислотах или щелочах, аналогично получению сульфата алюминия из его гидроксида, а также экстракцией органическими реагентами. [c.194]

    Опыт 7. В пробирки с растворами сульфата меди и сульфата алюминия добавить раствор соды. Наблюдать выпадение осадка гидроксокарбоната меди в первой пробирке и гидроксида алюминия — во второй. Написать уравнения происходящих реакций и объяснить полученные результаты. [c.203]

    В две пробирки вносят по 1-2 мл раствора сульфата алюминия и по каплям добавляют раствор едкого натра до образования осадка гидроксида алюминия. К полученному осадку добавляют растворы концентрации 2 мопь/л в одну - соляной кислоты, в другую - едкого натра до растворения осадка. Написать уравнения реакций получения гидроксида алюминия и его растворения в кислоте и щелочи, учитывая, что при взаимодействии гидроксида алюминия со щелочью образуется комплексный анион [АКОН) ].  [c.127]

    Взаимодействие гидроксида алюминия с серной кислотой, дозируемой в стехиометрическом количестве, применительно к процессу получения сульфата алюминия было описано выше. В данном разделе рассмотрим взаимодействие гидроксида алюминия с серной кислотой применительно к условиям получения дигидроксосульфата алюминия, т. е. при дозировании кислоты на молярное отношение А120з/50з = 2. В случае получения ДГСА гидроксид алюминия растворяется значительно медленнее. Так, при температуре 70 °С в течение 0,5 ч степень растворения составляет [c.82]

    Сколько молей сульфата алюминия следует взять на 1 моль сульфата цинка, чтобы в смеси веществ, полученных добавлением эквивалентного количества щелочи к раствору смеси указанных солей, гидроксид цинка составлял 20%  [c.12]

    При получении активного оксида алюминия как носителя катализаторов существенную роль играет процесс созревания или старения гелей гидроксида алюминия (табл. 49). Старение гелей протекает при отмывке их от примесей натрия, железа, сульфат-ионов, при хранении в виде лепешки и может продолжаться от нескольких часов до нескольких суток и даже месяцев. Для удаления примесей сульфат-ионов и катионов натрия суспензию гидроксида алюминия промывают, как правило, водой с низким содержанием примесей или химически очищенной водой (10—20 об. ч. воды на 1 об. ч. суспензии концентрацией 200—400 г AI2O3 на 1 л). Для более глубокого удаления примесей из гидроксида алюминия, кроме промывки водой, рекомендуют проводить дополнительную обработку раствором аммиака [Пат. Японии 53-28392 A. . 132622]. Для уменьшения содержания катионов натрия до 0,005% и менее рекомендуют предварительно промытую суспензию гидроксида алюминия нагревать при 190—210 °С под давлением диоксида углерода 1 — [c.129]

    С целью механизации производства сульфата алюминия предлагалось усовершенствовать загрузку и дозирование гидроксида алюминия в реактор путем приготовления водной суспензии, а также осуществлять непрерывную кристаллизацию концентрированного раствора сульфата алюминия на водоохлаждаемых барабанах, конвейерной ленте или в грануляционных аппаратах кипящего слоя. Применение аппаратов периодического действия затрудняет организацию производства большой мощности, обусловливает жесткую связь между периодически работающими реакторами и кристаллизаторами непрерывного действия. К недостаткам описанной технологии следует также отнести невозможность получения продукта с повышенным содержанием оксида алюминия и неудовлетворительный товарный вид сульфата алюминия, что сопряжено с определенными затруднениями при его транспортировании и употреблении на водоочистных станциях. [c.51]

    Получение геля гидроксида алюминия. Налейте в стаканчик 40—50 мл 10%-го раствора сульфата алюминия и приливайте по каплям раствор щелочи до образования геля. Полученный гель разделите по 10—20 пробиркам. Исследуйте устойчивость геля (температура, электролиты и другие факторы), его свойства. Почему гель Ре(ОН)з получить значительно труднее и он очень неустойчив Как можно использовать гель гидроксида алюминия для очистки воды от механических загрязнений Предложите эксперимент и попытайтесь его осуществить. [c.432]


    Составьте формулу мицеллы золя гидроксида алюминия, полученного при глубоком гидролизе сульфата алюминия. [c.152]

    Сырьем для получения носителя являются гидроксид алюминия, серная кислота и раствор жидкого стекла. В реакторе 1, куда поступают А1 (ОН)з, Н2504 и острый пар, производится раз-варка гидроксида алюминия с образованием сульфата алюминия. Разварку силикат-глыбы ведут в автоклаве 24, откуда жидкое стекло подают в формовочную колонну 9. Туда же на формовку поступает раствор А12(804)з. В эту же колонну вводят масло. [c.141]

    Известны и другие способы имитации бирюзы, однако количество работ, посвященных подлинно синтезу этого минерала, крайне ограничено. В тридцатые годы появились сообщения о получении синтетической бирюзы еще двумя способами [6]. Первый способ заключался в смешивании сульфатов меди и алюминия с гидроксидом алюминия и кислым фосфорнокислым натрием, взятым в эквимолярных бирюзе соотношениях, с последующим подогревом, а затем вымыванием образовавшегося сульфата натрия и сдавливанием на прессе полученного порошка. [c.251]

    Процесс включает стадии подготовки, концентрирования и промывки шлама, содержащего нерастворимый гидроксид металла, в условиях, исключающих контакт твердого вещества с воздухом и его высыхание. Затем мокрый шлам растворяют в разбавленной кислоте. Получаемый раствор может быть использован как таковой, например для добавления в электролитический раствор процессов отделки металлов, или подвергнут электролизу с применением нерастворимых анодов для выделения металла, от процесс также может быть использован для получения коагулянтов, содержащих сульфат алюминия. [c.273]

    В случае получения жидкого коагулянта раствор сульфата алюминия разбавляют водой до содержания 7 % АЬОз при непрерывной циркуляции раствора насосом и перемешивании сжатым воздухом, В продукте допускается содержание нерастворимого остатка до 1 % и свободной серной кислоты — до 0,1 %. В случае необходимости нерастворимый остаток отделяют на рамном фильтр-прессе. Продукт отправляется потребителям по трубопроводу или в автоцистернах. По этой технологии на 1000 кг продукта с 15% АЬОз расходуется 219 кг гидроксида алюминия, 451 кг НгЗО  [c.51]

    При ш,елочном (алюминатном) способе осаждение ведется из щелочных растворов (алюминатов) кислотами (серной, азотной, соляной) или кислыми растворами солей, например сульфатом алюминия. Глинозем растворяют в гидроксиде натрия. Из полученного раствора алюмината натрия гидроксид алюминия осаждают кислотой  [c.125]

    При гравиметрическом определении суммы ш елочных металлов в минералах и рудах микрохимическим методом навеску разлагают фтористоводородной кислотой для удаления кремневой кислоты [19]. Остаток фторидов нагревают с щавелевой кислотой, которая при высокой температуре вытесняет фтор. Образовавшиеся оксалаты металлов прокаливают при 800° С. При этом большинство металлов образует оксиды, а щелочноземельные элементы, магний и щелочные металлы — карбонаты. При обработке прокаленного остатка горячей водой в раствор переходят карбонаты щелочных металлов, гидроксид магния и небольшое количество карбонатов щелочноземельных элементов. Если образец содержит большие количества алюминия, железа и хрома, последние при прокаливании могут образовать алюминаты, ферраты и хромиты. Для их разложения раствор с осадком нагревают на водяной бане и после охлаждения обрабатывают насыщенным раствором карбоната аммония. Небольшое количество катионов, главным образом магния, оставшихся в растворе, осаждают 8-оксихинолином. Осадок отфильтровывают, раствор упаривают досуха и остаток прокаливают. Полученные карбонаты щелочных металлов переводят в сульфаты, которые взвешивают. Умножая на фактор пересчета, находят сумму оксидов лития, натрия, калия, рубидия и цезия. [c.57]

    Увеличение адсорбционной емкости гидроксида алюминия в результате магнитно-электрической обработки способствует значительному снижению цветности обрабатываемой воды и увеличению плотности осадка, полученного в процессе коагуляции. Так, если плотность осадка после обработки воды обычным коагулянтом составляла 1,018 г/см , то после обработки воды активным сульфатом алюминия 1,024— 1,037 г/см (в зависимости от параметров магнитно-электрической обработки), что связано с улучшением технологических параметров осветления воды 150]. [c.36]

    Исследования последних лет показали, что в формировании активности твердофазных реагентов большую роль играют собственные микродобавки, т. е. примеси, обусловленные химической предысторией [1]. Влияние фазы, продуктом топохимического превращения которой является реагент, не ограничено только ориентационным воздействием при формировании решетки. Твердофазный продукт довольно прочно удерживает и химические следы предшественника . Например, оксид магния, полученный термическим разложением гидроксида, сохраняет в решетке гидроксильные группы [от 0,1 до 0,01% (ат.)] даже после нагревания до 2200 °С, обработки в высоком вакууме и ионной бомбардировки с целью уменьшить поверхностные эффекты [77]. Более того, выращенные из такого материала монокристаллы MgO имеют микропоры, заполненные водородом под давлением 4-10 Па [78]. Водород возникает в результате взаимодействия гидроксильных форм со структурными вакансиями. Еще более интересная ситуация имеет место в оксиде алюминия, полученном термическим разложением сульфата [1]. Показано, что метастабильный продукт разложения у-А Оз, имеющий структуру дефектной шпинели с высокой концентрацией катионных вакансий, способен структурно связывать серу, координация которой в сульфат-ионе очень сходна с координацией катионов в тетраэдрических узлах кубической упаковки шпинели. Присутствие же структурно связанной серы в тетраэдрических узлах шпинельной структуры сильно затрудняет превращение последней, связанное с изменением порядка анионных слоев при переходе от кубической структуры к гексагональной. В этом и кроется причина аномально высокой стабильности у-А Оз, приготовленной из сульфата. Фазовое превращение суль- [c.241]

    Сорбционная способность электрохимически генерируемых гидроксидов алюминия и железа несколько выше, чем химически полученных. Отмечена повышенная сорбционная способность гидроксидов по отношению к красителям [97], сульфатам и хлоридам [43], что сказывается на коагулирующих свойствах образующейся твердой фазы. [c.122]

    При этом очень важна быстрота выполнения анализов исходных растворов товарных продуктов — жидкого стекла и сульфата алюминия. Процентное содержание 62 и ЫааО в жидком стекле можно определить по методике, описанной в п. 6.2.2.1. Концентрацию по 8102) приготовленного из его рабочего раствора определяют титрованием с метилоранжем отмеренного объема 0,1 н. раствором соляной кислоты. Концентрацию раствора сульфата алюминия проверяют титрованием с фенолфталеином 0,1 к. раствором гидроксида натрия. Соотношение объемов этих растворов устанавливают прямым титрованием раствора жидкого стекла раствором сульфата алюминия. В отдельных пробах определяют время застудневания и флокулирующие свойства полученного раствора АК. Такой раствор должен иметь следующие показатели скорость осаждения стандартной суспензии гидроксида алюминия при дозе 8Ю2 10 мг/л — не менее 0,9 мм/с вязкость 0,5%-ного раствора — около 1,2 мПа с время застудневания выходящего из реактора раствора — 6—12 ч. [c.772]

    Сущность технологии получения сульфата алюминия из его гидроксида заключается в разложении последнего в интервале температур 105—120 °С по реакции (2.2). Во избежание получения кислого продукта, содержащего более 0,05 % свободной серной кислоты, гидроксид алюминия берется в количестве несколько большем, чем стехиометрически необходимое, но так, чтобы содержание нерастворимого остатка в продукте не превысило 0,2—0,5 % (см. табл. 2.1). Концентрированный раствор сульфата алюминия (плав) с содержанием 13—17 % AI2O3 кристаллизуют при охлаждении, подвергают грануляционной сушке или разбавляют водой в случае получения жидкого коагулянта. [c.50]

    Использование в качестве сырья для получения сульфата алюминия дорогостоящего и дефицитного гидроксида алюминия, являющегося полупродуктом при получении металлургического глинозема, нерацио- [c.53]

    Получение активного оксида алюминия методом переосаж-дения глинозема широко используется зарубежными фирмами, причем исходные реагенты и условия процесса варьируются. Из данных, представленных в табл. 48, следует, что в алюминатных способах в качестве осаждающего реагента часто используют азотную кислоту. В кислотном способе получения гидроксида алюминия исходным реагентом в большинстве случаев служит сульфат алюминия, а осаждение ведут гидроксидом аммония. [c.128]

    Кислоту дозируют из расчета получения сульфата алюминия, и растворение заканчивают при pH 3—3,2, Доза кислоты увеличивается при наличии в осадках гидроксидов и карбонатов кальция и магния. Поскольку регенерацию осуществляют на очистных станциях, то коагулянт получают в виде растворов, которые отделяют от нерастворимого остатка отстаива- [c.194]

    Сырьем для получения носителя являются гидроксид алюминия, серная кислота и раствор жидкого стекла. В реакторе 1, куда поступают А1(0Н)з, Н2804 и острый пар, производится разварка гидроксида алюминия с образованием сульфата алюминия. Раз-варку силикат-глыбы ведут в автоклаве 24, откуда жидкое стекло подают в формовочную колонну 9. Туда же на формовку поступает раствор А12(504)з. В эту же колонну вводят масло. Сформованные шарики гидрогеля транспортируются водой в емкость мокрых обработок 13. Там проводятся операции созревания, активации и промывки гидрогеля. Именно на этой стадии возможно вводить в состав катализатора требуемое количество адсорбированного алюминия. Большие количества АЬОз в носителе (выше 5%) сильно инактивируют катализатор, взаимодействуя с УгОб. При наличии менее 4% АЬОз ухудшаются прочностные характеристики контактной массы. Промытый гидрогель подают на ленточную сушилку 16, [c.159]

    Для получения сульфата алюминия к отбросному раствору серной кислоты, образующемуся в процессе обработки алюминия, добавляют гидроксид или оксид алюминия, алюминиевую соль органической кислоты, квасцы (или же смесь этих соединений) до концентрации алюминия 43-52 г/л (заявка Япощш 51-136573). Смесь нагревают до 30-90 °С, охлаждают и отделяют вьшавшие кристаллы АЬ (804) 3. [c.33]

    Алюминия гидроксид. 1. Растворяют 100 г сульфата алюминия AI2(804)3 I8H2O в 150 мл дистиллированной воды и фильтруют. Фильтрат нагревают до 75—80°С и вливают тонкой струйкой при перемешивании в горячий раствор 63 г гидроксида натрия NaOH в 150 мл воды. Полученный раствор выдерживают при 70—80 °С в течение 20— 30 мин и фильтруют через двойной складчатый фильтр до полной прозрачности фильтрата. Осадок на фильтре промывают 30—50 мл горячей воды. [c.11]

    При производстве катализатора на основе ХУЗг, N 8 и АЬОз необходимо обратить особое внимание на приготовление активного оксида алюминия. Его готовят на основе алюмината натрия или сульфата алюминия, которые растворяют в воде при 40—80 С. Раствор алюмината натрия осаждают азотной кислотой, а раствор сульфата алюминия — водным аммиаком. Полученный гидроксид алюминия тщательно промывают, сущат при 120 °С в потоке циркулирующего воздуха и измельчают так, чтобы 95% его проходило через сито, имеющее 10 ООО отверстий на 1 см . Полученный порошок таблетируют совместно с графитом, прокаливают и многократно пропитывают раствором вольфрамата и сульфата никеля. Пропитанные таблетки после сушки осерняют смесью циркулирующего сероводорода и водорода при 430—440 °С. Готовый катализатор имеет следующее соотношение основных компонентов 25% [c.224]

    Вторым исходным раствором для получения кроиов служит так называемая хромовая смесь , которая представляет собой водный раствор бихромата калия или натрия с добавлением серной (нли хлороводородной) кислоты В отдельных случаях в смесь вводят и другие соединеиня Например, часть серной кислоты можно заменить на сульфат алюминия, который в процессе осаждения пигмента перейдет в гидроксид алюминия при добавлении к хромовой смеси небольшого количества соды Гидроксид алюминия является модифицирующей добавкой, повышающей дисперсность, интенсивность и светостойкость свинцового крона [c.309]

    При получении жидкого коагулянта концентрированный раствор основного сульфата алюминия с содержанием 17—18 % АЬОз, полученный разложением суспензии гидроксида алюминия серной кислотой при молярном отношении 50з/АЬ0з= 1,8ч-2, разбавляют водой до содержания АЬОз 8—8,5 % при непрерывном перемешивании мешалкой или сжатым воздухом. Затем раствор отделают от нерастворимого остатка фильтрованием или отстаиванием. Твердый остаток, представляющий собой гидроксид алюминия в виде гиббсита, возвращают на повторное разложение серной кислотой. Характерной особенностью этого процесса является практически полное использование гидроксида алюминия. Производство коагулянтов в жидком виде позволяет существенно упростить погрузочно-разгрузочные работы и технологию их применения на очистных сооружениях, автоматизировать процессы подготовки коагулянта и его потребления. Однако существенным недостатком является относительно невысокое содержание оксида алюминия, в связи с чем увеличиваются транспортные расходы. В этом случае необходимо стремиться к получению высокоосновных коагулянтов с высоким содержанием оксида алюминия. [c.85]

    Основные хлориды алюминия можно получить путем взаимодействия сульфата или хлорида алюминия с недостатком щелочи в растворе. С целью повышения стабильности продуктов в качестве сырья используют растворы алюмината натрия или калия с молярным отношением Ма/А1 = = 1. ..2 и содержанием 1 —15 % АЬОз и 1 —10 % 504 . Смешивают растворы при 5—40 °С, и полученный гель выдерживают при 50—80 °С. Продукты имеют общую формулу А1, /(0Н) С1зт-л-2 (504), где Зш>п + 2/ , /г/т = 0,01-Ь-0,3 Зт/Зш — п — 2й = 0,6- 1,5/1. Кони,ентрация солей составляет 5—15 % (пат. 3929666 США, 2107970 ФРГ). Полученные основные хлориды содержат много посторонних ионов. Процесс инициируется введением гидроксид-ионов  [c.92]

    Сырьем служат растворы хлорсульфата алюминия А12(504) с/2С1б-х, приготовленные из сульфата и хлорида алюминия с содержанием 8 % АЬОз или смешением сульфата алюминия и хлорида кальция в течение 0,5 ч при температуре 90 °С (а. с. 386843 СССР). Хлорсульфат алюминия можно также получить при обработке минерального сырья смесью серной и соляной кислот или добавлением серной кислоты к горячему раствору хлорида алюминия. В последнем случае часть хлороводорода удаляется в газовую фазу. Введением карбоната, оксида, гидроксида кальция или бария в интервале температур 80—90 °С осаждают сульфат-ионы. Время обработки составляет 2 ч. После отделения осадка в растворе остается основной хлорид алюминия. Основность последнего определяется отношением l /SOf- и дозой осадителя. Основные хлориды алюминия, полученные таким способом, содержат до 2,6 % SOi". [c.93]

    Окисленные руды подвергают восстановительному обжигу для перевода марганца в растворимую в кислоте форму (МпО), карбонатные руды растворяются непосредственно в кислоте. Восстановленную руду обрабатывают отработанным после электролиза кислым анолитом (Н2504+Мп504), и полученный раствор очищают от примесей железо и алюминий в виде гидроксидов, а тяжелые металлы в виде сульфидов. Для электролитического осаждения Мп необходимо поддерживать pH в электролите 4—7. Для этого к раствору Мп504 добавляется буферная добавка — сульфат аммония. [c.311]

    Метод получения криолита, разработанный фирмой TVA (США) [182], заключается в том, что фторсодержащие газы абсорбируют раствором аммиака и фторида аммония при рН = =5—6 с получением смеси фторида и фторсиликата аммония. Для осаждения SiOz к раствору добавляют водный аммиак до pH = 8—9,5, и после отделения ЗЮз раствор фторида аммония смешивают с сульфатом алюминия. Из раствора выпадают кристаллы аммонийного криолита (ЫН4)зА1Рб, который далее перерабатывают в криолит, либо используют для производства фторида алюминия путем добавления гидроксида алюминия с последующей кальцинацией смеси в печи и рециркуляцией аммиака. [c.104]

    При нагревании трех осадков —хлорида серебра, сульфата бария и гидроксида алюминия — просто удаляется вода и, возможно, летучие электролиты, осадившиеся в процессе получения осадка. Для доведения обезвоженных осадков до постоянной массы используется широкий интервал температур. Так, для полного удаления влаги из хлорида серебра требуется температура от ПО до 120°С полная дегидратация гидроксида алюминия достигается при температуре выше 1000 °С. Интересно заметить, что гидроксид алюминия, полученный методом гомоген- [c.153]

    Гидроксид алюминия получают, действуя раствором аммиака на раствор сульфата или хлорида алюминия. Вьшавший осадок отфильтровывают и высушивают между листами фильтровальной бумаги. Гидроксид алюминия имеет развитую поверхность и обладает высокой адсорбирующей способностью. В этом можно убедиться и на следующих примерах осадок гидроксида алюминия, полученный, как описано выше, после фильтрации промывают водой и оставляют на фильтре. Через осадок профильтровывают воду, окрашенную органическим красителем (например, метиловымфиоле- [c.81]

    Анодная оксидная пленка на алюминии имеет полимерноколлоидную структуру и состоит из плотно упакованных частиц (АЬОз) [283—285]. Рост пленки происходит в слое, непосредственно примыкающем к металлу. Этот тонкий слой постоянно обновляется он проницаем для ионов, участвующих в образовании сложного по составу оксидного слоя. В полученной пленке содержатся также поры и трещины, содержащие вещества с различными анионами электролита (сульфаты, фосфаты, хроматы). Основные соединения алюминия, включающие анионы электролита, способствуют гидратации частиц АЬОз, одновременно препятствуя их сополимеризации в направлениях, параллельных поверхности металла. Толщины оксидных пористых слоев, получаемых в кислых средах, составляют около 100 мкм. При pH 5 в состав пленок могут включаться и частицы гидроксида алюминия. [c.209]


Смотреть страницы где упоминается термин Получение сульфата алюминия из гидроксида алюминия: [c.84]    [c.219]    [c.144]    [c.238]    [c.13]    [c.58]   
Смотреть главы в:

Коагулянты и флокулянты в процессах очистки воды -> Получение сульфата алюминия из гидроксида алюминия




ПОИСК





Смотрите так же термины и статьи:

Алюминий гидроксид

Алюминий получение

Алюминий сульфат

Гидроксиды

Сульфат получение



© 2024 chem21.info Реклама на сайте