Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец соединения, восстановление

    Процесс восстановления соединений с помощью активных металлов (А1, Mg, Са, Na), называется металлотермией. Этот метод используется для получения многих металлов, например, марганец получают восстановлением его оксида с помощью алюминия (алюминотермия или алюмотермия)  [c.193]

    Приготовление марганца свободным от всяких примесей представляет большие трудности прежде всего, трудно получить в химически чистом виде его соединения. Восстановление марганца алюминием, углеродом или другими восстановителями сложно потому, что восстановители способны частично растворяться и переходить в восстановленный марга нец. Обычно марганец загрязнен железом и углеродом. [c.537]


    Марганец получают из его природного соединения пиролюзита МпОз восстановлением при высоких температурах углеродом. В своих соединениях марганец проявляет следующие степени окисления +2, -1-3, +4 (наиболее устойчивая), +6 и +7 технеций +2, +4 и 4-7 (устойчивая) и рений -1-3, +4 и +7 (устойчивая). [c.426]

    Важнейшими природными соединениями переходных элементов являются сульфиды и оксиды. Суммарный кларк переходны с элементов 5 мас.%, из них основную долю составляет железо (4,7%), на втором месте находится титан (- 0,6%), на третьем — марганец (- О.Р/о). В свободном состоянии переходные элементы получают в основном восстановлением их оксидов алюминием, кальцием, водородом, электролизом или разложением малопрочных соединений (галогенидов, карбонилов, оксалатов и некоторых других). [c.490]

    Восстановление железа из руды заканчивается примерно при 1100° С. При этой температуре частично восстанавливаются кремний, марганец и фосфор из их соединений, содержащихся в руде в виде примесей. Эти процессы можно выразить уравнениями  [c.313]

    При кислотном разложении минералов вольфрама необходимо присутствие в конце разложения окислителя, чтобы избежать образования растворимых соединений вольфрама низшей валентности и последующих потерь их с промывными водами. Восстановление вольфрама может происходить, в частности, за счет сероводорода, выделяющегося при разложении кислотой сульфидных минералов. При разложении вольфрамита необходимо, кроме того, окислять железо и марганец для более полного их отделения при последующей обработке раствором аммиака. [c.257]

    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]


    Факторы, определяющие, какой из двух продуктов восстановления, Мп + или МпОг, образуется в действительности, довольно сложны и зависят как от кинетики, так и от термодинамики. В нейтральной, щелочной, а также в слабокислой средах продуктом реакции обычно является диоксид марганца. Однако за исключением некоторых реакций с органическими соединениями перманганат калия обычно применяют для титрований в кислой среде, где концентрация ионов водорода составляет 0,1 М или больше. При этом продуктом реакции является марганец(П). [c.320]

    Железо и марганец. Присутствие этих металлов даже в очень низких концентрациях делает воду непригодной для бытовых и промышленных нужд. Следы железа и марганца вызывают загрязнение ванн и раковин, придают коричневатый цвет выстиранному белью и влияют на вкус воды. Грунтовые воды, лишенные растворенного кислорода, могут содержать значительные количества двухвалентных железа Ре + и марганца Мп + в растворимых (бесцветных) формах. В результате окисления они превращаются в устойчивые нерастворимые соединения трехвалентного железа Ре + и четырехвалентного марганца Мп +, придавая воде цвет ржавчины. Если поступающая к потребителю вода была взята из придонных анаэробных слоев резервуаров или рек, контактировавших с породами, которые содержали железо и марганец, то в ней могут присутствовать как восстановленные, так и окисленные их формы, причем последние часто образуют комплексные соединения с органическими веш,ествами. [c.30]

    Мы видели, что для восстановления нитратов необходимы металлы — молибден, медь, железо, магний и марганец. При недостатке этих элементов редукция нитратов резко замедляется, что влечет за собой их накопление в тканях растений и ослабление синтеза органических соединений азота. Особое значение в процессе восстановления нитратов придается молибдену. В ряде почв имеется недостаточное количество этого элемента, или он содержится в недоступной для растений форме. Поэтому для усиления процессов восстановления нитратов, а следо- [c.239]

    Использование комплексонов в полярографии обещает многое. Исходя из того, что комплексоны образуют прочные комплексные соединения со многими катионами, можно ожидать существенных изменений в ходе восстановления отдельных катионов, из которых некоторые, связанные в комплекс, могут восстанавливаться только вне области поляризации капельного электрода, т. е. могут полярографически совсем не открываться, например никель, кобальт, марганец и цинк, связанные в комплекс с комплексоном И1, в среде аммиака и хлорида аммония восстанавливаются при потенциале более отрицательном, чем ион аммония [80]. Для характеристики отдельных комплексонов необходимо знать потенциалы выделения отдельных комплексных соединений металлов при различных pH. В этом направлении были исследованы, и то не полностью, нитрилотриуксусная кислота, этилендиаминтетрауксусная кислота и 1,2-диаминоциклогексан-1Ч, N, N, N -тетрауксусная кислота. [c.144]

    При поляризации на катоде кроме основного процесса — выделения водорода или восстановления субстрата — идет разряд катионов электролита фона, если потенциал достиг необходимого значения. Атом металла внедряется в кристаллическую решетку металла катода, образуя твердые растворы или интерметаллические соединения [80]. В настоящее время известно, что кроме щелочных и щелочноземельных металлов, ионы которых чаще всего присутствуют в электролите, внедряться могут бор, кадмий, теллур, кремний, свинец, олово, марганец. Цинк, кадмий, ртуть, олово, свинец, серебро, платина, никель, железо, часто используемые в качестве катодов, входят в ряд металлов, в которые внедряются те или иные элементы. [c.45]

    Марганец получают либо электролизом раствора MnS04, либо восстановлением из его оксидов кремнием в электрических печах. Второй (силикотермический) метод более экономичен, но дает менее чистый продукт. При электролитическом методе руду восстанавливают до соединений марганца со степенью окисленности - -2, а затем растворяют в смеси серной кислоты с сульфатом аммония. Получающийся раствор подвергают электролизу. Снятые с катодов осадки металла переплавляют в слитки. [c.662]

    КМп"" Оа + С1, = 2КМп" 0 + КС1, до преманганат - иона, содержащего марганец в высшей степени окисления +7 Перманганат калия (КМПО4) - наиболее широко применяемая соль марганцовой кислоты. Как и все соединения Мп(У[1), это сильный окислитель. В зависимости от pH среды возможны следующие направления его восстановления  [c.96]

    На составе древних пород, несомненно, отразился состав атмосферы ранних периодов истории Земли. В частности, это касается соотношений между восстановленными и окисленньми формами различных соединений переходных металлов. В основном земная кора, как известно, сложена из силикатных и алюмосили-катных пород, а также кварца. Алюмосиликатные минералы в результате выветривания и действия воды частично разрушались, и возникшие при этом растворимые соединения металлов попадали в водоемы металлы в низших степенях окисления — марганец (И), железо (II)—подвергались окислению, которое в кислородную эру протекало интенсивно. [c.376]


    В качестве катализаторов применяли иикепь металлический, оксид никеля, никель азотнокислый, никель сернокислый, никель муравьинокислый, никель шавелевокислый, оксид кобальта, оксид марганца, оксид хрома, оксид железа, предварительно восстановленные водородом при температуре 500°С, промьниленные катализаторы никель-марганцевый, железо-хромовый, алюмо-никель-молибденовый, интерметаллическое соединение цирконий-никелевый гидрид ультрадисперсные оксиды металлов кобальт-никель-марганец-хром, медь-хром-марганец-кобальт, медь-хром-кобальт-1шкель-марганец, медь-кобальт-хром-железо-ннкель-марганец, а также двухкомпонентные катализаторы на основе металлов подгруппы железа. Физико-химические свойства их приведены в табл.7. [c.42]

    НОМ 3, И Нг К Н2О, превышающем 1,2, окалины на стали (не образуется. Поскольку от сжигания топлива до СО получается мало тепла, а несгоревший водород и вовсе не дает тепла, то невозможно при вышеуказанных соотношениях достичь температуры 1200°, если не принять каких-либо специальных мер для повышения температуры печи. Такими мерами могут быть сжигание топлива в кислороде или дожигание его в регенераторах или рекуператорах, которые служат для подогрева воздуха, расходуемого на горение или дожигание газов в особой камере, из которой тепло передается в нагревательное пространство через тонкую муфельную стенку. Номограмма на рис. 151 применима только для железа и стали. Разные металлы имеют различное химическое сродство с кислородом. Чтобы для других металлов получить номограмму, аналогичную изображенной на рис. 151, надо ее продлить в направлении обеих стрелок. Такое распространение номограммы на другие металлы было выполнено тем же Нейманном (рис. 152). Номограмма дана в логарифмических координатах со следующими делениями 1, 2, 5, 10, 20, 50, 100 и т. д. Более мелкие деления показаны на вспомогательных шкалах. iMeждy прочим, из рис. 152 видно, что никель в так называемой окислительной атмосфере печи не окисляется. Количество водорода может составлять нё более 1% от количества водяного пара, а окиси углерода — всего 1 % от количества углекислого газа, никель окисляться не будет. Кривая равновесия марганца располагается вблизи противоположного конца номограммы. При температурах, поддерживаемых в печи, марганец будет окисляться даже в том случае, если атмосфера печи будет состоять из чистого водорода, окиси углерода и инертного газа, например азота. Активность марганца при высоких температурах по отношению к кислороду используется для восстановления стали в мартеновских печах. В атмосфере, состоящей из окиси углерода и инертного газа, марганец при температурах печи окисляется благодаря реакции 2С0 = С -f СО2. Хотя окись углерода (СО) при повышенных температурах является весьма устойчивым соединением, указанное выше явление временной и исчезающей диссоциации обусловливает и эту быстг ро протекающую реакцию. Вновь возникающие молекулы углекислого газа диссоциируют таким же способом, и марганец окисляется временно освобождающимся кислородом. На рис. 152 приведены также кривые равновесия других используемых в промышленности металлов. [c.201]

    Определению содержания титана не мешают магний, алюмиий, цинк, кадмий, марганец, РЗЭ, медь, цирконий, церий, кобальт, молибден (V), ванадий (IV). Молибден (VI) образует с реактивом окрашенное соединение и его мешающее влияние устраняют также, как и мешающее влияние железа рП) и ванадия (V), восстановлением аскорбиновой кислотой, гидроксиламином. Никель, хром (III) мешают определению содержания титана собственной окраской. [c.123]

    Научные работы охватывают многие области химии. Был прекрасным экспериментатором. До конца жизни оставался сторонником теории флогистона. Открыл (1768) фтористый водород, предложил (17(39) способ получения фосфора, выделил (1774) в свободном виде хлор, марганец и оксид бария. Установил (1772), что атмосферный воздух состоит из двух видов — огненного (кислорода) и флогистированного (азота). Совместно с Т. У. Бергманом и Ю. Г. Ганом разработал (1774) способ получения фосфора из золы рогов и костей животных. Они же провели (1774) исследование пиролюзита ( черной магнезии ) и установили, что при его восстановлении углем образуется неизвестное в то время металлическое тело, названное ими магнезиумом. Г. Дэви предложил (1808) назвать этот металл марганцем. Открыл (1775) мышьяковистый водород и мышьяковую кислоту. Получил и исследовал (1777) сероводород и другие сернистые соединения. Первым указал на возможность различной степени окисления железа, меди и ртути. Исследовал минералы. Одновременно с Ф. Фонтаной обна- [c.567]

    Очевидно очень важно, чтобы применяемый гексацианоферрат (III) калия не содержал гексацианоферрата (II) калия, иначе синяя окраска получится и с двухвалентным и с трехвалентным железом. Для приготовления реактива кристаллы чистого гексацианоферрата (III) калия промывают несколько раз водой для удаления гексацианоферрата (II) калия, который мог образоваться вследствие восстановления первого случайно попавшей на него пыль ), и затем растворяют с таким расчетом, чтобы получить 1 %-ный раствор. Растворы гексацианоферрата (III) калия при стоянии медленно восстанавливаются, поэтому при] отовляют очень малые количества этого раствора. На солнечном свету гексацианоферрат (III) калия и железо (III) реагируют друг с другом с образованием окрашенного в синий цвет соединения. При определении железа этим методом нельзя для его восстановления применять металлический цинк, потому что образующиеся в растворе соли цинка будут реагировать с гексацианоферратом (III) калия с выделением осадка, мешающего пробе. Должны отсутствовать также и другие элементы, образующие нерастворимые гексацианоферраты (III), как, например, медь, никель и марганец. Присутствие фтористоводородной кислоты в растворе приводит к замедлению образования сивего окрашивания и к получению неправильных результатов. Для устранения ее мешающего влияния надо прибавить борную кислоту [c.448]

    Для окисления применяют свежеприготовленный раствор персульфата 95%-ной чистоты (стр. 61). Во всех случаях анализируемый раствор следует кипятить 8—10 мин, чтобы обеспечить полное окисление хрома и разложение избытка персульфата. Марганец при этом окисляется до перманганата или двуокиси марганца, которые также необходимо разрушить до прибавления сульфата железа (II). Для этого, после разложения персульфата кипячением, на каждые 300 мл раствора прибавляют но 5 мл разбавленной (1 3) соляной кислоты и продолжают кипятить до восстановления ркисленных соединений марганца, после чего кипятят еще 5 мин для удаления хлора. Если до прибавления соляной кислоты персульфат был полностью разрушен, хромовая кислота нри этой обработке не восстанавливается. [c.593]

    Ход определения. Раствор, полученный после разложения пробы сплавлением, как указано в разделе Разложение минералов, содержаш,их хром (стр. 589), или другим способом, свободный от хлорид-ионов и содержащий приблизительно 15—18 мл сердой кислоты и 3 жл азотной кислоты в общем объеме 300 мл, нагревают до кипения. Прибавляют 2,5%-ный раствор нитрата серебра в количестве, соответствующем 0,01 г соли на каждую 0,01 г находящегося в растворе хрома. Нагревают до кипения и приливают 20 мл свежеприготовленного 10%-ного раствора персульфата аммодия. Кипятят 10 мин и затем, если образуется перманганат или окислы Iмарганца, вводят 5 5 %-ного раствора хлорида натрия или 5 мл разбавленной (1 3) соляной кислоты, снова нагревают до кипения и после восстановления соединений марганца продолжают кипятить еще 5 мин. Если при этом марганец не восстанавливается, вводят еще некоторое количество хлорида натрия или соляной кислоты и снова кипятят. [c.594]

    Единственным действительно важным соединением четырехвалентного марганца является МпОг — твердое вещество, имеющее окраску от серой до черной и встречающееся в природе в виде минерала пиролюзита. Марганец соединяется с кислородом при высокой температуре, образуя диоксид со структурой рутила, характерной и для многих других оксидов общей формулы М Оз, в частности для оксидов рутения, молибдена, вольфрама, рения, осмия, иридия и родия. Но при получении обычным методом, например прокаливанием Мп(Ы0з)2-6Н20 на воздухе, образуется несте-хиометрический оксид. Гидратированную форму получают при восстановлении КМПО4 в щелочном растворе. [c.466]

    Восстановление металлов из их соединении более активными металлами называется MeTajiAOTepjuueu. В частности, получение металлов с помощью алюминия называется алюминотермией. Металлотермией получают те металлы, которые при восстановлении их оксидов углем образую т карбиды (наиример, марганец, хром, титан, молибден, вольфрам). Иногда металлы из оксидов восстанавливают водородом  [c.306]

    Вследствие легкой окисляемости на воздухе Мп(ОН)г может случиться, что весь марганец окажется не в растворе, а в осадке вместе с Н2Т10з в виде МпО(ОН)з, поскольку последнее соединение в H2SO4 нерастворимо. При действии серной кислоты и перекиси водорода оно, однако, растворяется вследствие восстановления и Мп под влиянием Н2О2. Таким образом, полученный при действии указанных реактивов раствор следует сохранить для пробы на Мп++, если открытие его по п. 8 не удается. [c.313]

    Оже [29] еще в 1910 г. описал соединение сине-зеленого цвета, которое он получил при нагревании перманганата калия с едким кали. Позднее подобное соединение было получено другими исследователями путем сплавления перманганата с едким кали, пота-шем или восстановления его водородом в щелочной среде. Все эти исследователи рассматривали получаемое соединение как смесь четырех- и шестивалентного марганца состава ЗМагО МпОг МпОз. Недавно было показано, что в действительности марганец здесь находится в пятивалентной форме. Таким образом, соединение это должно быть представлено формулой НазМп04 или МпО (ONa) з [30]. [c.581]

    Полярографическая волна никеля в различных растворах всегда предшествует волне кобальта, вследствие чего последний невозможно определить в присутствии высоких концентраций никеля (исключение составляет восстановление трехвалентного кобальта, связанного в комплекс с комплексоном). Как никель, так и кобальт, а также медь, цинк, марганец и кадмий образуют с комплексоном в сильноаммиачном растворе очень прочные комплексные соединения, которые полярографически не проявляются. Если к такому раствору прибавить раствор, содержащий ионы кальция, то катионы будут вытеснены из комплексов в порядке, обратном их вхождению в комплекс, и перейдут в аммиачные комплексы. Исключение составляет никель, характеризующийся очень медленными реакциями вытеснения и в значительной степени вытесняемый ионами кальция из комплексного соединения с комплексоном (см. полярограммы 9, 10). [c.235]


Смотреть страницы где упоминается термин Марганец соединения, восстановление: [c.519]    [c.79]    [c.15]    [c.118]    [c.253]    [c.378]    [c.217]    [c.798]    [c.1053]    [c.414]    [c.731]    [c.184]    [c.757]   
Справочник по общей и неорганической химии (1997) -- [ c.61 , c.63 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление марганца

Марганца ато-соединения



© 2025 chem21.info Реклама на сайте