Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородный электрод уравнение Нернста

    Учитывая, что °для пары 2Н+/Нг принято равным нулю, уравнение Нернста для водородного электрода имеет вид [c.261]

    Электродные потенциалы. Уравнение Нернста. Способов измерения или расчета абсолютных значений электродных скачков потенциала (AiJ) или All)") пока не найдено. Однако ЭДС цепи, состоящей из двух или большего числа электродов, доступна прямому определению и равна алгебраической сумме всех межфазных скачков потенциала (см. I этой главы). В простейшем случае она равна разности двух электродных скачков потенциала, т. е. является мерой их относительных значений. Величина каждого из электродных скачков потенциала может быть принята за нулевую точку условной шкалы электродных потенциалов. Международным соглашением установлена шкала потенциалов, по которой скачок потенциала стандартного водородного электрода при всех температурах равен нулю. [c.286]


    Опишите устройство а) водородного электрода б) серебряного электрода в) стеклянного электрода г) каломельного электрода. Запишите электрохимические реакции для них и уравнение Нернста для каждого электрода. [c.268]

    Найдя потенциал хлорсеребряного электрода относительно нормального водородного, применяем к хлорсеребряному электроду уравнение Нернста  [c.557]

    Стеклянный электрод. Стеклянный электрод относится к мембранным электродам, механизм действия которых все еще не вполне установлен, однако имеется немало состоятельных объяснений причин функционирования стеклянных электродов в качестве водородных электродов. И хотя в данном случае отсутствуют электрохимические реакции окисления и восстановления компонентов, обусловливающие возникновение разности потенциала на поверхности раздела стекло — раствор, зависимость потенциалов стеклянных электродов от pH растворов вполне закономерно описывается уравнением, аналогичным уравнению Нернста. [c.60]

    Водородный электрод. В принципе индикаторным электродом для измерения pH может служить водородный электрод. Гальванический элемент с этим электродом изображен на рис. 9—6 (см. с. 275). Потенциал водородного электрода зависит от активности иона водорода по уравнению Нернста, но его можно использовать только в среде, свободной от посторонних окислителей или восстановителей, так как эти вещества влияют на потенциал электрода. Кроме того, следы многочис- [c.371]

    Зависимость равновесных потенциалов водородного и кислородного электродов от давления определяется по уравнению Нернста  [c.114]

    Характеристика окислительно-восстановительных свойств воды очень важна для понимания многих окислительно-восстановительных реакций в водном растворе, суждения об устойчивости различных окислителей и восстановителей в водном растворе и т.д. Потенциал стандартного водородного электрода условно принят за нуль, поэтому уравнение Нернста для водородного электрода [c.111]

    Можно измерить лишь сумму напряжений Гальвани в виде электродвижущей силы (э.д.с.) или, лучше сказать, напряжение гальванической ячейки [7—9], представляющей собой систему двух электродов с контактирующими электролитными растворами (разд. 4.2). При применении в качестве одного из электродов или полуэлемента водородного электрода, стандартный потенциал которого условно принят равным нулю, измеренная э.д.с. соответствует относительной величине потенциала данной системы э.д.с. в этом случае называют электродным потенциалом Е. В соответствии с этим уравнение Нернста принимает следующий вид  [c.98]


    Электроды первого рода. К ним относятся электроды, состоящие из металлической пластинки, погруженной в раствор соли этого же металла, например Zn Zn +, Си Си +, и водородный электрод. В зависимости от знака ЭДС элемента, в который включен электрод, на металлической пластинке идет процесс перехода катиона из металла в раствор или из раствора в металл, т. е. данные электроды обратимы по катиону. Потенциал электродов первого рода связан с активностью катиона в растворе уравнением Нернста [c.251]

    Для индикации редокс-пары Н+/Н2 применяют водородный электрод. Во избежание перенапряжения платинированную, платиновую проволоку (или пластину) насыщают очищенным газообразным водородом и помещают в анализируемый раствор. В соответствии с уравнением Нернста потенциал для реакции Нг— Н++2е рассчитывают как [c.314]

    Подчинение потенциала водородного электрода уравнению Нернста при = 1 атм было проверено нами с помощью [c.10]

    Подчинение потенциала водородного электрода уравнению Нернста проверялось нами также при различных парциальных давлениях (ниже 1 атм) газообразного водорода с по.мощью азото-водородных смесей и постоянной концентрации ионов Н+ (рис. 3). [c.11]

    Связь между активностью ионов водорода (анО величиной потенциала, измеренного водородным электродом, выражается уравнением Нернста  [c.104]

    Во 2-м способе (Фрумкин и Шлыгин) используется платинированный платиновый (Pt/Pt) электрод с большой поверхностью, на котором адсорбируется водород, а затем растворенный водород удаляется из системы током азота. При пропускании азота потенциал электрода смещается в анодную сторону, так как парциальное давление водорода падает. Если потенциал сдвинуть до 30 мВ по отношению к обратимому водородному электроду в том же растворе, то при этом в соответствии с уравнением Нернста парциальное давление водорода составит уже около 0,01 МПа. Так как растворимость водорода подчиняется закону Генри, то можно подсчитать, что концентрация растворенного водорода при 0,01 МПа составит приблизительно 10" моль/л. Предположим, что для измерения кривой заряжения используется такой же электрод, как и при измерении адсорбционных кривых (см. 7) с истинной поверхностью 50 м . Адсорбция водорода на этом электроде может быть подсчитана исходя из предположения, что на каждом поверхностном атоме платины при обратимом водородном потенциале адсорбируется один атом водорода. Так как на [c.61]

    На металлических электродах, ногружеипых в раствор соли того же металла, идет процесс перехода катиона пз металла в раствор или из раствора в металл в зависимости от знака э. д. с. цепи, в которую включен электрод. Эти лектроды обратимы относительно катпона. Они называются электродами первого рода. К ним принадлежит и водородный электрод. Потенциал электрода первого рода связан с активностью катиона в растворе уравнением (XX, 14) Нернста. [c.549]

    Диаграмма представляет собой линейные зависимости равновесных потенциалов окислительно-восстановительных систем металла и его соединений в воде от pH раствора при 25 С. Зависимости равновесных потенциалов от pH рассчитываются по уравнению Нернста. Прямыми вертикальными линиями отмечаются величины гидратообразования. Таким образом, диаграмма разбита на отдельные участки — области преобладания. Точке, находящейся в той или иной области отвечает определенное термодинамически устойчивое соединение или ион, которые указываются в центральной части области преобладания. Потенциалы приводятся относительно потенциала стандартного водородного электрода. В качестве примера приведена упрощенная диаграмма для системы железо—вода (рис. 3). Линии равновесий обозначены цифрами, под которыми в подписях к рисунку приводятся соответствующие равновесия. [c.24]

    Зависимость потенциала водородного электрода от активности ионов водорода (о +) в растворе в соответствии с уравнением Нернста дается следующим выражением  [c.201]

    ЭДС такого элемента с учетом уравнения Нернста для водородного электрода будет равна [c.262]

    Окислительно-восстановительный потенциал титруемого раствора (измеряемый потенциалом платинового электрода, опущенного в титруемый раствор, по отношению к водородному электроду) вычисляется до уравнения Нернста (в милливольтах)  [c.124]

    Металл, погруженный в электролит, называется электродом. Наибольшая принципиальная трудность, связанная с использованием уравнения Нернста, обусловлена невозможностью измерить потенциал одного единственного электрода. Например, если попытаться определить путем измерения электродный потенциал 2п/2п , т.е. разность потенциалов между металлическим цинком и раствором соли цинка, в который он погружен, необходимо металл и раствор соединить проводником с измерительным прибором. Соединить прибор с металлом нетрудно, гораздо сложнее присоединить к прибору раствор. Это соединение можно осуществить только с помощью металлического проводника, который опускается в раствор. Но как только металл проводника (например , медь) приходит в соприкосновение с раствором, на его поверхности образуется двойной электрический слой и, следовательно, появляется разность потенциалов. Итак, при помощи измерительного прибора можно определить не электродный потенциал одного электрода (металла), а разность потенциалов между двумя электродами (в данном случае разность потенциалов между цинковым и медным электродами). Поэтому при измерении электродных потенциалов металлов выбирают некоторый электрод сравнения, потенциал которогсГ словно принят за нуль. Таким электродом сравнения служит стандартный водородный электрод (рис. 3.2). Он представляет собой платиновую пластину, покрытую тонко измельченной "платиновой чернью , погруженную на платиновой проволоке в стеклянный 32 [c.32]


    В тех случаях, когда измеряется э. д. с. ячейки, вопрос об электроде сравнения отпадает, поскольку величина э. д. с. численно равна разности двух электродных потенциалов. Когда же с помощью уравнения Нернста рассчитывают электродные потенциалы, нельзя не учитывать потенциал электрода сравнения. Электродные потенциалы всегда рассматривают относительно электрода сравнения. В настоящее время для их вычисления применяют водородную шкалу, в которой за нуль принят потенциал стандартного водородного электрода (СВЭ) с активностью ионов водорода в растворе, равной единице, и давлением водорода, равном 0,1013 МПа. [c.107]

    Таким образом, металлический электрод в присутствии своего малорастворимого оксида играет роль водородного электрода. Однако сурьмяный электрод является не вполне обратимым электродом, и измеряемые этим электродом потенциалы не вполне подчиняются уравнению Нернста. Несмотря на это, в лабораторной практике часто пользуются сурьмяным (рис. 105) электродом, так как он имеет ряд существенных преимуществ. Он отличается большой простотой и удобством в обращении, применяется при анализе как кислых, так и щелочных растворов а также при анализе растворов, содержащих электролитные яды (сульфиды, цианиды), которые нарушают правильную работу водородного и хингидронного электродов. [c.184]

    Следует напомнить, что знак и значение потенциала электрода в гальваническом элементе не зависят от схематической записи происходящего в элементе процесса, в то время как потенциал полуреакции, вычисленный по уравнению Нернста, является термодинамической величиной и зависит от того, в каком направлении написана полуреакция. При построении кривой редокс титрования потенциал интересующей нас полуреакции, если она записана как реакция восстановления, всегда идентичен по знаку и значению потенциалу индикаторного электрода относительно стандартного водородного электрода. Поэтому при построении кривой титрования мы будем применять уравнение Нернста специфично к полуреакции, написанной как процесс восстановления. [c.293]

    Рассмотрим метод электролитического разделения меди и цинка. Медь и цинк занимают различные места в ряду напряжений (см. рис. 12.3). Для разделения таких металлов можно ограничиться определенными физическими условиями, а именно приложить к электродам напряжение, достаточное для количественного осаждения меди, но недостаточное для выделения цинка даже из концентрированных растворов его солей. Для электролиза Г М раствора сульфата цинка необходимо напряжение =1,7 — (—0,8) = = 2,5 В. Если приложить меньшее нагряжение, например 1,7 В, цинк выделяться не будет. Полноту выделения меди в этих условиях можно вычислить из уравнения Нернста. Напряжение разложения 1,7 В при выделении на аноде кислорода в ряду напряжений соответствует потенциалу на катоде, равному нулю, т. е. потенциалу стандартного водородного электрода. Подставляя это значение в уравнение Нернста , находим  [c.227]

    Если потенциал ионно-металлического электрода отнесен к нормальному водородному, то его зависимость от концентрации участвующих в реакции компонентов электрода выражается уравнением Нернста (ур. 1. 28). Для непосредственного измерения такого потенциала должна быть составлена ячейка [c.47]

    Отклонения потенциала без тока от значения, определяемого уравнением Нернста, часто бывают связаны с установлением смешанных потенциалов вследствие протекания посторонних замедленных электрохимических процессов, связанных чаще всего с загрязнением электролита (так, наличие в растворе следов кислорода приводит к изменению потенциала водородного электрода). [c.780]

    Подстановка значения концентрации одородны.ч атомов из последнего уравнения в формулу Нернста для водородного электрода дает [c.439]

    Ацидиметрическое титрование можно также проводить, используя вместо водородного гладкий платиновый электрод в качестве индикаторного. Здесь потенциалобразующей является реакция 40Н — "02+2Н20- -4е и уравнение Нернста имеет вид [c.314]

    Электродный потенциал электрода, измеренный по отношению к потенциалу стандартного водородного электрода (платинированный платиноводородный электрод с = 1 атм и анзо" = 1 моль-л"электродный потенциал которого при любой температуре принимают равным 0), получают исходя из уравнения Нернста (4.1.5). Наиболее простыми электродами, применяемыми в потенциометрии, являются так называемые электроды первого рода. Они представляют собой комбинацию простое вещество — раствор электролита, при этом различают электроды, обратимые относительно катионов или анионов (табл. 4.2). При участии газов в реакциях, определяющих значение потенциала, потенциал электродов зависит от давления электрохимической реакции. [c.115]

    Зависимость потенциала окислительно-восстановительного электрода от pH не означает, что его можно уподобить газообразному водородному электроду. Например, потенциал электрода Ре2+, РеЗ+, 0,1-н. НС1 равен 0,7 в. Если же рассматривать его как газовый электрод, то получим, по уравнению Нернста фн = 0,0596 1дСн+ —0,0298 Рн что лишено [c.165]

    На практике для определения О.-в.п. строят электрохик . цепи из нек-рого стандартного электрода и электрода, на к-ром протекает соответствующий редокс-процесс. В водных р-рах в качестве стандартного используют водородный электрод. В такой цепи эдс приравнивается к значению О.-в.п. и выражается Нернста уравнением  [c.338]

    Па), термодинамич. активности ионов водорода в р-ре af , равной 1, наз. стандартным водородным электродом, а епэ потенциал условно принимают равным нулю. Потенциалы другах электродов, отнесенные к стандартному водородному электроду, составляют шкалу стандартных электродных потенциалов (см. Стандартный потенциал). Для водороднопэ Э. с. Нернста уравнение записывается в ввде  [c.426]

    Относительно высокая концентрация ионов НСО3 во внутреннем растворе гарантирует прямую связь между концентрацией СОг во внешнем растворе и активностью ионов водорода во внутреннем растворе. В качестве ион-селективного электрода на водородный ион используют обычный стеклянный электрод, а градуировка основана на уравнении Нернста. Измерение pH можно использовать и для определения других газов, таких, как 80г или N02. Подходящие химические реакции приведены в табл. 7.7-3. [c.498]

    Приборы для автоматического измерения pH. Водородный показатель pH является универсальным параметром многих процессов физико-химической и химической очистки сточных вод. Количественно он равен отрицательному десятичному логарифму числа поиов водорода в растворе. В настоящее время из всех известных методов измерения pH применяют главным образом потенциометрический, который основан на измерении электрического потенциала па металлическом электроде, погружеипом в раствор соли того же металла. Потенциал зависит от активной концентрации ионов и описывается уравнением Нернста  [c.242]

    Изметение потенциала Е отдельного электрода в зависимости от концентраций окислителя, восстановителя и других веществ, участвующих в полуреакции, выражается через стандартный электродный потенциал Е° посредстюм уравнения Нернста (11). Для электродного потенциала активности водорода и водородного иона равны единице и поэтому их логарифмы равны нулю. [c.19]

    Измеренный относительно нормального водородного электрода в том же растворе потенциал платинового электрода связан с истинным равновесным парциальным давлением водорода посрэдством уравнения Нернста  [c.138]

    Особое внимание уделяется обратимым электродам, т. е. электродам, потенциал которых меняется в соответствии с уравнением Нернста при изменении концентрации определенных частиц в растворе. Это связано с возможностью использования таких э.тектродов для определения термодинамических характеристик и с тем, что протекающие на их поверхности реакции обычно просты и хорошо известны. Если для водных систем накоплен обширный материал по растворимости и равновесиям при комплексообразовании [404], то для неводных систем соог-ветствующих данных несравнимо меньше. Это означает, что для поиска подходящих термодинамических электродов второго рода в первую очередь необходимо исследовать явления растворимости и комплексообразования в указанных средах. Сольватация в апротонных электролитах часто является некоторым равновесием между координацией с катиона.ми и образованием водородных связей с анионами, причем как растворимость, так и стабильность комплексов может существенно меняться при переходе от одного растворителя к другому. Довольно сложно найти соль, катион которой образует обратимую пару с соответствующим материалом электрода и которая в то же время сравнительно плохо растворима в растворах, содерн<ащих избыток анионов. Поведение проверенных временем водных систем, основанных на [c.203]


Смотреть страницы где упоминается термин Водородный электрод уравнение Нернста: [c.554]    [c.180]    [c.184]    [c.148]    [c.288]    [c.288]    [c.293]    [c.558]    [c.351]   
Теоретическая электрохимия (1981) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Водородный электрод

Нернст

Нернста уравнение



© 2025 chem21.info Реклама на сайте